职称论文百科

沃森克里克论文发表

发布时间:2024-07-04 18:22:32

沃森克里克论文发表

1953年4月25日,英国著名的科学期刊《自然》杂志发表了沃森、克里克的一篇优美精炼的短文,宣告了DNA分子双螺旋结构模型的诞生。这一期杂志还发表了富兰克琳和威尔金斯的两篇论文,以实验报告和数据分析支持了沃森、克里克的论文。 这一年,沃森年仅25岁,克里克也只有37岁,尚未获得博士学位。这两个年轻人之所以超越了其他看似更具实力的竞争者,赢得了这场科学赛跑的胜利,是由于他们具有清醒的宏观洞察力、非凡的科学想像力和严密的逻辑思维能力,选择了正确的研究路线,广泛借鉴他人的研究成果并加以综合性的科学思考。 1962年,沃森、克里克与威尔金斯因研究DNA双螺旋结构模型的成果,共同荣获了诺贝尔生理学或医学奖

DNA双螺旋的提出 主要成就是把物理学运用到生命科学中,并开启了分子生物学的新天地,可以说是分子生物学的奠基人。运用物理学中的晶体衍射技术,对DNA进行衍射,通过对比,判断DNA为双螺旋,此照片是沃森在实验室偷的,本来并不打算给他看,他偷看的。当时照出来的是A型DNA,不是我们通常认识的B型DNA,后来沃森克里克通过不断的组合,建立了DNA的双螺旋结构,并否定了有自己推出的磷酸为骨架,在内部起支撑作用,碱基在外排布的说法,再一次偶然的机会中提出了正确的模型,即核糖为骨架,碱基进行配对的模型。 在这个过程中,由于沃森克里克不是学化学的,所以对于碱基的化学结构并不了解,所以在模型建立过程中遭到化学家的耻笑,并且化学家都不愿意帮助他们,所以饶了圈子,最后才提出碱基配对。 另外,之所以大部分人都提不出双螺旋结构,是因为当时化学家思路不广,她们几乎没有人想到“核酸也是酸” 因此,沃森克里克威尔金斯他们的合作,是把物理学 生命科学 化学 结合到一起,从而成为分子生物学的奠基人。

用“某度学术”,搜A Structure for Deoxyribose Nucleic Acid ,J. D. Watson and F. H. C. Crick。这是他俩那篇著名的论文。

25,37。1953年4月25日,25岁的沃森和37岁的克里克在《自然》杂志发表仅1000余字的论文。他们在英国剑桥卡文迪什实验室解开了人类遗传学的秘密-DNA是一个双螺旋结构,形状像一个长长的、轻微扭曲的梯子。

沃森克里克发表的论文

1953年,沃森和克里克发现了DNA双螺旋的结构。953年2月,沃森、克里克通过维尔金斯看到了富兰克琳在1951年11月拍摄的一张十分漂亮的DNA晶体X射线衍射照片,这一下激发了他们的灵感。他们不仅确认了DNA一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。意义双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。

1953年4月25日,英国著名的科学期刊《自然》杂志发表了沃森、克里克的一篇优美精炼的短文,宣告了DNA分子双螺旋结构模型的诞生。这一期杂志还发表了富兰克琳和威尔金斯的两篇论文,以实验报告和数据分析支持了沃森、克里克的论文。 这一年,沃森年仅25岁,克里克也只有37岁,尚未获得博士学位。这两个年轻人之所以超越了其他看似更具实力的竞争者,赢得了这场科学赛跑的胜利,是由于他们具有清醒的宏观洞察力、非凡的科学想像力和严密的逻辑思维能力,选择了正确的研究路线,广泛借鉴他人的研究成果并加以综合性的科学思考。 1962年,沃森、克里克与威尔金斯因研究DNA双螺旋结构模型的成果,共同荣获了诺贝尔生理学或医学奖

用“某度学术”,搜A Structure for Deoxyribose Nucleic Acid ,J. D. Watson and F. H. C. Crick。这是他俩那篇著名的论文。

dna双螺旋结构是哪一年发现的?1953年双螺旋被发现詹姆斯.杜威.沃森,一九二八年四月六日生于美国芝加哥,由于提出DNA的双螺旋结构而获得一九六二年诺贝尔生理学或医学奖,被称谓DNA之父.还有克里克于1916年6月8日出生在英国的北汉普顿.美国和英国~请采纳~

沃森和克里克发表的论文

1953年4月25日,英国著名的科学期刊《自然》杂志发表了沃森、克里克的一篇优美精炼的短文,宣告了DNA分子双螺旋结构模型的诞生。这一期杂志还发表了富兰克琳和威尔金斯的两篇论文,以实验报告和数据分析支持了沃森、克里克的论文。 这一年,沃森年仅25岁,克里克也只有37岁,尚未获得博士学位。这两个年轻人之所以超越了其他看似更具实力的竞争者,赢得了这场科学赛跑的胜利,是由于他们具有清醒的宏观洞察力、非凡的科学想像力和严密的逻辑思维能力,选择了正确的研究路线,广泛借鉴他人的研究成果并加以综合性的科学思考。 1962年,沃森、克里克与威尔金斯因研究DNA双螺旋结构模型的成果,共同荣获了诺贝尔生理学或医学奖

1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型.经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质 DNA双螺旋组成的碱基对扁平环连结着.他们谦逊地暗示说,遗传物质可能就是通过它来复制的.这一设想的意味是令人震惊的:DNA恰恰就是传承生命的遗传模板.1953年沃森和克里克提出著名的DNA双螺旋结构模型,他们构造出一个右手性的双螺旋结构.当碱基排列呈现这种结构时分子能量处于最低状态.沃森后来撰写的《双螺旋:发现DNA结构的故事》(科学出版社1984年出版过中译本)中,有多张DNA结构图,全部是右手性的.这种双螺旋展示的是DNA分子的二级结构.

1953年,沃森和克里克发现了遗传物质DNA的双螺旋结构。在对DNA分子的结构的研究中,于1953年摘取桂冠的是两位年轻的科学家——美国生物学家沃森和英国物理学家克里克。沃森和克里克及同事富兰克林经过长时间的研究,最初的模型是碱基在外面,但这个模型很快被否定了;后来又构建了碱基对在里面的模型,但碱基配对的方式又被一位化学家否定了。直到1952年春天,奥地利化学家查可夫访问剑桥大学,两位科学家才得到将碱基配对的方式改为现在的A—T、G—C配对的方式。1953年,沃森和克里克的论文《核酸的分子结构——脱氧核糖核酸的一个结构模型》在英国《自然》杂志上刊载,引起极大轰动。1962年,沃森、克里克的威尔金斯三人因此共同获得了诺贝尔生理学或医学奖。这就是DNA分子双螺旋结构模型的发现过程。

生物与非生物之间有何区别?是什么把他们划分为两种截然不同的物质?答案自然是生命。那么问题就来了,生命有何特性?这种特性如何发挥作用?作为一本科普书,《生物与非生物之间》介绍了人类生命观的变迁,读完就能回答这个问题。 人们的认识处于不断地发展中,受限于当时的认知水平,不同时期的人们对生命的认识并不一致。所以,对生命观做一个梳理还是很有必要的。 一、生命的特性就是自我复制 1953年,沃森和克里克发表论文,提出了著名的DNA双螺旋结构模型。他们在论文的最后暗示道,双螺旋结构暗示了遗传物质的自我复制机制。 这一发现轰动了整个科学界,因为他们揭示了近半个世纪以来,科学界苦苦追寻的生命谜题。 自此,20世纪的生命科学对于生命的特性给出的答案终于揭晓,生命就是一套自我复制系统,这一观念被广泛认可。 这个结论在今天的我们看来是常识,在生物教科书上也只是几句话带过,但是在半个多世纪里,它却耗费了无数科学家的心血。 沃森和克里克凭借双螺旋结构一举成名,并荣获了当年的诺贝尔医学奖,年纪轻轻的他们摇身一变成为科学明星,登上了科学的最高峰,被世人尊崇,荣光无限。但我们却不知道,他们的研究成果并不是他们独创,他们只是站在了无数巨人的肩膀上,所以成功来的特别容易。他们背后那些默默无闻的科学家更值得敬佩。 1、埃弗里的发现 19世纪末的时候,人们了解到的结构最为复杂的高分子化合物是蛋白质,所以人们普遍认为遗传因子就是某种特殊的蛋白质。当奥斯瓦尔德.埃弗里提出遗传因子并不是蛋白质,而是DNA的时候,所引起的轰动是空前的。 埃弗里的发现揭开了二十世纪生命科学的序幕,在他退休后不久,科学界便掀起了一股DNA研究的狂潮,科学家们开始疯狂的分析DNA的结果,解读DNA的密码。 2、查戈夫的谜题 查戈夫就是为DNA疯狂的科学家之一。他发现了DNA的结构之谜,也就是A的数量等于T的数量,C的数量等于G的数量。他百思不得其解,虽然离答案近了很多,他却并不知道这意味着什么。 3、罗莎琳德.富兰克林推算出的DNA结构 罗莎琳德.富兰克林的研究更进一步,她拍摄了DNA晶体的X衍射图片,发现了DNA的结构是C2空间群,这个发现距离揭开DNA结构之谜只有一步之遥,而罗莎琳德却并没有意识到。 最后,这个谜题被沃森和克里克揭开了。 4、沃森和克里克的结论 他们提出的双螺旋结构,也就是DNA的双链相互交缠,是互补的,能够相互复制,这使得DNA的整体复制成为可能,性状的传递也就轻而易举。生命的神秘就存在这个双螺旋结构之中。 这个结论当然无可置疑,因为它建立在许多科学家的研究成果之上,所以一经提出,就没有被怀疑。至今,这个理论已经成为常识,在每个学习生物的人看来都平常的不能再平常。 二、动态平衡的生命系统是生命的另一根支柱。 既然生命的特性是自我复制,那么新的问题又来了。熵增加原理会毫不留情的影响组成生命体的每一种成分,高分子化合物会氧化,发生断裂,蛋白质也会受损,生命体中时刻都会有零部件老化受损面临崩溃,那么自我复制系统能保证生命体的正常运转吗? 答案是否定的。 自我复制系统只能保证遗传信息的传递,并不能保证生命体的耐用与稳定,这时候动态平衡系统粉墨登场了。 生命体就像沙滩上的沙煲,许许多多的沙子组成了这个沙煲这个整体,但是海风海浪时刻都在侵蚀着它的稳固,不时会有沙子被吹走或者飘走,但同时也有源源不断的沙子被送进来。于是新的代替旧的,整个沙煲依然稳固。 这时候不得不提到舍恩海默了。 舍恩海默是第一个将做过标记的示踪同位素用于生物实验的科学家,他的创举在生命科学界具有划时代的意义,他最大的科研成果是提出了崭新的生命观,他提出了生命就是流动的现象,但不幸的是他的丰功伟绩随着他的自尽很快被人遗忘。 他做了很经典的小白鼠实验。他用重氮来标记氨基酸,并将它们喂食给小白鼠,回收小白鼠组织中的蛋白质,对其进行分析,他发现小白鼠摄入的氨基酸经过分解和分配,转化成了其他种类的氨基酸,这些氨基酸又组成了新的蛋白质。这就意味着经过标记的氨基酸被分解,成为某些零部件,同时还参与了其他零部件的组成,也就是说分解和替换发生在比氨基酸更细的层面。 做实验用的小白鼠,身体内的零部件已经被更换了大半,严格来说,已经不是我们喂食之前的小白鼠了。我们看到的小白鼠,就是流动现象的本身。 经过多次的实验,舍恩海默得出结论,生命就是代谢的持续性变化,这种变化正是生命的本质。他坚信,无论组成生命的分子是什么,都无法跳出流动的原则。 崭新的生命观就此诞生。 自我复制机制的确能定义生命,但是并不是唯一的指标,我们的生命还有另一根支柱,那就是动态平衡系统。生命体内部时刻都在进行着新陈代谢,各种零部件一直处于新旧交替之中,这样就保证了生命体的活力。 所以,舍恩海默说,生命就是出于动态平衡状态的流体。 三、生命与机器不同,它遵循的是不可逆的时间历程。 科学家们,曾经一度把生命当做一部由众多零部件装起来的精密机器,在他们看来敲除一部分基因和拆掉一部分零部件是一回事,所以,他们一直在做敲除基因的实验。但是,越来越多的实验让他们意识到,把生命比作机器本就是不妥当的。 被完全敲除了ES细胞里的GP2基因,小白鼠仍然能正常成长,而且和正常的小白鼠没有任何区别。但是如果只是被敲除一部分ES细胞的GP2基因,小白鼠的生长则受到很大的影响,它最终衰弱而死。 如果生命真的和机器一样,应该是完全敲除某些基因才会导致生命体受到威胁,而不是个别零部件坏掉就足以导致整个机器受损。 这说明,把生命比做成可以随时更换零部件的机器是十分不妥当的。 生命是单向的过程,是不可逆的,它不像机器,可以随时拆除任意位置的零部件而不影响到机器的运转。生命遵循的是时间法则,在生命中的某个时间段,某个零部件就发挥作用,如果被敲除,生命的动态平衡系统还可以再创造出替代的零部件,来保证系统的正常运转。但如果是基因被部分损坏,则它所应该发挥的作用就受到了抑制,动态平衡系统在弥补的时候会产生一定的误差,所以会离初衷越来越远,最后对生命体造成的将是不可逆的影响。 生命只有一次,不可能重来,如果某个阶段出现问题,迎接它的下一步将会是死亡。虽然动态平衡系统有着灵活的适应能力和惊人的修复能力,但是在人为的介入下,它也会出现差错,一旦出现差错,后果将是致命的不可挽回的。 所以,作者说,我们进行的种种实验,其实只证明了一件事那就是人类不可能像操纵机器那样操纵生命。 生命无法倒退,每个瞬间都是完成态。它就像折纸,有一个既定的方向,即使出现了偏离与失衡,也不能拆开,而只能沿着这个路线继续折叠下去。所以,生命不是机器那样可以随意任由我们人类操纵。人为的介入,代价高昂,后果惨重。 读完整本书后,如果问你生命是什么,不妨用无法拆开的折纸来回答。 从生命的自我复制特性到提出动态平衡系统,再到生命是不可逆的时间洪流,人类的生命观一直在进化,从单纯的形而下学的层面日益升级,最终形成了现在的人性化的形而上的观点。这是认识上的飞跃,也是生命科学的进步。 从最初追求技术上的进步,把生命当做机器,到现在尊重生命,一路上我们走过了太多的弯路,但好在我们正在回到正轨,对生命重新升腾起敬畏。

沃森和克里克论文发表在

罗莎琳德·富兰克林

人物简介

Rosalind Franklin (1920-1958)英国物理学家和生物化学家她在DNA结构的研究方面为DNA的双螺旋结构的发现打下了基础,这一发现对于现代生物学和医学的发展有着重要的影响。

尽管她的工作对DNA结构的发现起到了关键作用,但Franklin并没有在历史上得到公认。她的成就不仅在于发现了DNA的结构,还在于她为女性科学家争取了更多的机会和平等。她的成就和贡献使她成为了一个令人敬仰的科学家和先驱者。

生平经历

一、少女时期,好奇心初醒

Rosalind Franklin出生于伦敦是一个富裕的犹太家庭的孩子在她小时候,就表现出了对科学和数学的浓厚兴趣。她的好奇心和求知欲为她日后成为一名杰出的科学家打下了基础。也为她获得了进入牛津大学的资格。

Franklin在牛津大学学习物理学和化学,并在剑桥大学获得了博士学位在校期间,她表现出了卓越的学术能力。此外,Franklin还学习了多种语言,这对她未来的国际研究工作非常有帮助。

二、事业起步,卓越之路

在她的职业生涯中的第一个阶段Rosalind Franklin致力于研究晶体学,研究领域涉及煤的结构、多种材料的晶体学和细胞结构等领域。

在此期间,她成为了X射线晶体学方面的专家。并在英国的一些知名研究机构和大学工作,其中包括伦敦大学学院和国王学院。这个阶段的经历为她对DNA的结构研究打下了基础。

三、DNA探索,开创新纪元

1951年,Franklin被邀请加入伦敦国王学院的生物化学研究组。在这里,她开始了对DNA结构的深入研究。她使用X射线晶体学技术,对DNA进行了高分辨率的拍摄。与葛斯林一同发现了发现了DNA的其中的两种型态:“A型”和“B型”,并提出了A型DNA的X射线衍射图

Franklin的研究为人类认识DNA的结构和功能奠定了基础。其成果为其他研究者提供了极为重要的数据,最终为詹姆斯·沃森和弗朗西斯·克里克的双螺旋结构提供了证据。

四、宝贵遗产,不朽影响

尽管她的工作对DNA结构的发现起到了关键作用,但Franklin并没有在当时得到公认。1953年,詹姆斯·沃森和弗朗西斯·克里克在有关DNA结构的论文中,并未透露Franklin的贡献。其中沃森在其著作《双螺旋》中将Franklin形容成一个“女学究”型的女性,并描述她是个不合作的人物。

直到她去世后几年,她的工作终于得到了广泛的认可和赞誉。她的成就不仅在于发现了DNA的结构,还在于她为女性科学家争取了更多的机会和亚等。她的成就和贡献使她成为了一个令人敬仰的科学家和先驱者。

1953年,沃森和克里克发现了遗传物质DNA的双螺旋结构。在对DNA分子的结构的研究中,于1953年摘取桂冠的是两位年轻的科学家——美国生物学家沃森和英国物理学家克里克。沃森和克里克及同事富兰克林经过长时间的研究,最初的模型是碱基在外面,但这个模型很快被否定了;后来又构建了碱基对在里面的模型,但碱基配对的方式又被一位化学家否定了。直到1952年春天,奥地利化学家查可夫访问剑桥大学,两位科学家才得到将碱基配对的方式改为现在的A—T、G—C配对的方式。1953年,沃森和克里克的论文《核酸的分子结构——脱氧核糖核酸的一个结构模型》在英国《自然》杂志上刊载,引起极大轰动。1962年,沃森、克里克的威尔金斯三人因此共同获得了诺贝尔生理学或医学奖。这就是DNA分子双螺旋结构模型的发现过程。

1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定谔的《生命是什么?--活细胞的物理面貌》这本进化论的理论基础书籍,促使他去“发现基因的秘密”。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了埃尔温·薛定谔《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。有一天,沃森又到国王学院威尔金斯实验室,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。克里克请数学家帮助计算,结果表明嘌呤有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌呤和两个嘧啶两两相等的结果,形成了碱基配对的概念。他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。2014年科学家研究表明,人体内仅有8%DNA具有重要作用,剩余的DNA都是“垃圾”。英国牛津大学研究显示,仅有8.2%的人体DNA具有重要作用,剩余的DNA都是进化残留物,就像是阑尾一样,对人体无益,也没有什么害处。研究负责人古尔顿-伦特(Gurton Lunter)博士说:“人体内绝大多数DNA并不具有重要作用,仅是占据空间而已。”之前评估显示人体80%DNA具有“功能性”,或者说具有重要作用。这就相当于从谷壳中分离小麦是非常重要的,因为这将确保医学研究人员聚焦分析疾病相关的DNA,进一步促进研制新的治疗方案。合著作者克里斯-庞廷(Chris Ponting)教授说:“这不仅仅是关于模糊性‘功能’的学术争论,从医学角度来看,这是解释人类疾病中基因多样性必不可少的环节。”

沃森克里克发表论文的图片

是1953年在剑桥大学卡文迪许实验室与詹姆斯·沃森共同发现了脱氧核糖核酸(DNA)的双螺旋结构。二人也因此与莫里斯·威尔金斯共同获得了1962年的诺贝尔生理及医学奖,这枚奖章现保存于百慕迪再生医学中心  。

2004年因大肠癌病逝。他的一名同事,科赫,曾感叹道:“他临死前还在修改一篇论文;他至死犹是一名科学家”。

2001年,中科院汪云九教授曾经到圣迭戈的索尔克生物研究所访问克里克教授,同他探讨了研究意识问题的理论,克里克从未到过中国,但他表示了对东方古国的强烈兴趣,他说可惜他的身体和腿脚已经不允许他作国际旅行了,但他还是为《狂热的追求》和《惊人的假说》中译本写了序言。

1953年4月25日,英国著名的科学期刊《自然》杂志发表了沃森、克里克的一篇优美精炼的短文,宣告了DNA分子双螺旋结构模型的诞生。这一期杂志还发表了富兰克琳和威尔金斯的两篇论文,以实验报告和数据分析支持了沃森、克里克的论文。 这一年,沃森年仅25岁,克里克也只有37岁,尚未获得博士学位。这两个年轻人之所以超越了其他看似更具实力的竞争者,赢得了这场科学赛跑的胜利,是由于他们具有清醒的宏观洞察力、非凡的科学想像力和严密的逻辑思维能力,选择了正确的研究路线,广泛借鉴他人的研究成果并加以综合性的科学思考。 1962年,沃森、克里克与威尔金斯因研究DNA双螺旋结构模型的成果,共同荣获了诺贝尔生理学或医学奖

DNA双螺旋的提出 主要成就是把物理学运用到生命科学中,并开启了分子生物学的新天地,可以说是分子生物学的奠基人。运用物理学中的晶体衍射技术,对DNA进行衍射,通过对比,判断DNA为双螺旋,此照片是沃森在实验室偷的,本来并不打算给他看,他偷看的。当时照出来的是A型DNA,不是我们通常认识的B型DNA,后来沃森克里克通过不断的组合,建立了DNA的双螺旋结构,并否定了有自己推出的磷酸为骨架,在内部起支撑作用,碱基在外排布的说法,再一次偶然的机会中提出了正确的模型,即核糖为骨架,碱基进行配对的模型。 在这个过程中,由于沃森克里克不是学化学的,所以对于碱基的化学结构并不了解,所以在模型建立过程中遭到化学家的耻笑,并且化学家都不愿意帮助他们,所以饶了圈子,最后才提出碱基配对。 另外,之所以大部分人都提不出双螺旋结构,是因为当时化学家思路不广,她们几乎没有人想到“核酸也是酸” 因此,沃森克里克威尔金斯他们的合作,是把物理学 生命科学 化学 结合到一起,从而成为分子生物学的奠基人。

意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在发表的论文中加上"DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制"这句话。他认为,如果没有这句话,将意味着他与沃森"缺乏洞察力,以致不能看出这一点来"。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。

相关百科
热门百科
首页
发表服务