职称论文百科

卢瑟福发表的论文

发布时间:2024-07-03 16:36:48

卢瑟福发表的论文

玻尔(楼上复制黏贴谁不会)

英国物理学家欧内斯特·卢瑟福(Ernest Rutherford,1871~1937)1895年来到英国卡文迪许实验室,跟随汤姆逊学习,成为汤姆逊第一位来自海外的研究生。卢瑟福好学勤奋,在汤姆逊的指导下,卢瑟福在做他的第一个实验——放射性吸收实验时发现了α射线。卢瑟福设计的巧妙的实验,他把铀、镭等放射性元素放在一个铅制的容器里,在铅容器上只留一个小孔。由于铅能挡住放射线,所以只有一小部分射线从小孔中射出来,成一束很窄的放射线。卢瑟福在放射线束附近放了一块很强的磁铁,结果发现有一种射线不受磁铁的影响,保持直线行进。第二种射线受磁铁的影响,偏向一边,但偏转得不厉害。第三种射线偏转得很厉害。 卢瑟福在放射线的前进方向放不同厚度的材料,观察射线被吸收的情况。第一种射线不受磁场的影响,说明它是不带电的,而且有很强的穿透力,一般的材料如纸、木片之类的东西都挡不住射线的前进,只有比较厚的铅板才可以把它完全挡住,称为γ射线。第二种射线会受到磁场的影响而偏向一边,从磁场的方向可判断出这种射线是带正电的,这种射线的穿透力很弱,只要用一张纸就可以完全挡住它。这就是卢瑟福发现的α射线。第三种射线由偏转方向断定是带负电的,性质同快速运动的电子一样,称为β射线。卢瑟福对他自己发现的α射线特别感兴趣。他经过深入细致的研究后指出,α射线是带正电的粒子流,这些粒子是氦原子的离子,即少掉两个电子的氦原子。“计数管”是来自德国的学生汉斯·盖革(Hans Geiger,1882-1945))发明的,可用来测量肉眼看不见的带电微粒。当带电微粒穿过计数管时,计数管就发出一个电讯号,将这个电讯号连到报警器上,仪器就会发出“咔嚓”一响,指示灯也会亮一下。看不见摸不着的射线就可以用非常简单的仪器记录测量了。人们把这个仪器称为盖革计数管。藉助于盖革计数管,卢瑟福所领导的曼彻斯特实验室对α粒子性质的研究得到了迅速的发展。1910年马斯登(E.Marsden,1889-1970)来到曼彻斯特大学,卢瑟福让他用α粒子去轰击金箔,做练习实验,利用荧光屏记录那些穿过金箔的α粒子。按照汤姆逊的葡萄干蛋糕模型,质量微小的电子分布在均匀的带正电的物质中,而α粒子是失去两个电子的氦原子,它的质量约为电子质量的7300倍。当这样一颗重型炮弹轰击原子时,小小的电子是抵挡不住的。而金原子中的正物质均匀分布在整个原子体积中,也不可能抵挡住α粒子的轰击。也就是说,α粒子将很容易地穿过金箔,即使受到一点阻挡的话,也仅仅是α粒子穿过金箔后稍微改变一下前进的方向而已。这类实验,卢瑟福和盖革已经做过多次,他们的观测结果和汤姆逊的葡萄干蛋糕模型符合得很好。α粒子受金原子的影响稍微改变了方向,它的散射角度极小。马斯登和盖革又重复着这个已经做过多次的实验,奇迹出现了!他们不仅观察到了散射的α粒子,而且观察到了被金箔反射回来的α粒子。在卢瑟福晚年的一次演讲中曾描述过当时的情景,他说:“我记得两三天后,盖革非常激动地来到我这里,说:‘我们得到了一些反射回来的α粒子......’,这是我一生中最不可思议的事件。这就像你对着卷烟纸射出一颗15英寸的炮弹,却被反射回来的炮弹击中一样地不可思议。经过思考之后,我认识到这种反向散射只能是单次碰撞的结果。经过计算我看到,如果不考虑原子质量绝大部分都集中在一个很小的核中,那是不可能得到这个数量级的。” 卢瑟福所说的“经过思考以后”,不是思考一天、二天,而是思考了整整一、二年的时间。在做了大量的实验和理论计算和深思熟虑后,他才大胆地提出了有核原子模型,推翻了他的老师汤姆逊的实心带电球原子模型。卢瑟福检验了在他学生的实验中反射回来的确是α粒子后,又仔细地测量了反射回来的α粒子的总数。测量表明,在他们的实验条件下,每入射约八千个α粒子就有一个α粒子被反射回来。用汤姆逊的实心带电球原子模型和带电粒子的散射理论只能解释α粒子的小角散射,但对大角度散射无法解释。多次散射可以得到大角度的散射,但计算结果表明,多次散射的几率极其微小,和上述八千个α粒子就有一个反射回来的观察结果相差太远。汤姆逊原子模型不能解释α粒子散射,卢瑟福经过仔细的计算和比较,发现只有假设正电荷都集中在一个很小的区域内,α粒子穿过单个原子时,才有可能发生大角度的散射。也就是说,原子的正电荷必须集中在原子中心的一个很小的核内。在这个假设的基础上,卢瑟福进一步计算了α散射时的一些规律,并且作了一些推论。这些推论很快就被盖革和马斯登的一系列漂亮的实验所证实。卢瑟福提出的原子模型像一个太阳系,带正电的原子核像太阳,带负电的电子像绕着太阳转的行星。在这个“太阳系”,支配它们之间的作用力是电磁相互作用力。他解释说,原子中带正电的物质集中在一个很小的核心上,而且原子质量的绝大部分也集中在这个很小的核心上。当α粒子正对着原子核心射来时,就有可能被反弹回去。这就圆满地解释了α粒子的大角度散射。卢瑟福发表了一篇著名的论文《物质对α和β粒子的散射及原理结构》。 卢瑟福的理论开拓了研究原子结构的新途径,为原子科学的发展立下了不朽的功勋。然而,在当时很长的一段时间内,卢瑟福的理论遭到物理学家们的冷遇。卢瑟福原子模型存在的致命弱点是正负电荷之间的电场力无法满足稳定性的要求,即无法解释电子是如何稳定地待在核外。1904年长岗半太郎提出的土星模型就是因为无法克服稳定性的困难而未获成功。因此,当卢瑟福又提出有核原子模型时,很多科学家都把它看作是一种猜想,或者是形形色色的模型中的一种而已,而忽视了卢瑟福提出模型所依据的坚实的实验基础。卢瑟福具有非凡的洞察力,因而常常能够抓住本质作出科学的预见。同时,他又有十分严谨的科学态度,他从实验事实出发作出应该作出的结论。卢瑟福认为自己提出的模型还很不完善,有待进一步的研究和发展。他在论文的一开头就声明:“在现阶段,不必考虑所提原子的稳定性,因为显然这将取决于原子的细微结构和带电组成部分的运动。”当年他在给朋友的信中也说:“希望在一、二年内能对原子构造说出一些更明确的见解。”

答案C考查化学史。道尔顿提出的原子学说,爱因斯坦提出了相对论,汤姆生发现了电子,答案选C。查看原帖>>

1911年,卢瑟福发表了题为“物质的a和β粒子的散射和原子结构”的论文,他在a粒子散射实验结论的基础之上提出了原子的有核模型和原子核概念。这一实验是近代物理学发展史上最具影响力的著名实验之一。该实验中观察到的a粒子大角度散射现象否定了汤姆逊的原子模型,为原子的核式模型的建立奠定了基础。

卢瑟福发表的论文下载

1937年,卢瑟福去世时,卡皮查万分悲痛。他在一篇悼念的文章中写道:“卢瑟福不仅是一位伟大的科学家,而且也是一位伟大的导师,在他的实验室中培养出如此众多杰出物理学家,恐怕没有一位同时代的科学家能与卢瑟福相比。科学史告诉我们,一位杰出科学家不一定是一位伟人,而一位伟大的导师则必须是伟人。” 而这位伟人的伟大品格就是在苏格兰的农舍中培育出来的。父亲的心灵手巧,母亲的乐观向上、勤劳、朴实是卢瑟福的榜样卢瑟福的父亲是一个聪明又肯动脑子的人,他勤奋又有创造性。在开办亚麻厂时,他试验用几种不同的方法浸渍亚麻利用水力去驱动机器,选用本地的优良品种,结果他的产品被认为是新西兰最好的一类。他还设计过一些装置能提高工作效率。卢瑟福的父亲的潜移默化的熏陶下,也喜欢动手动脑,显示出他非同寻常的创造天赋。他家里有一个用了多年的钟,经常停下来,很耽误事,大家都认为无法修理了。但是卢瑟福却不肯轻易把它丢掉,他把旧钟拆开,把每一个零件重新调整到位,清理钟内多年的油泥,重新装好。结果,不仅修好了,而且还走得很准。 当时照相机还是比较贵重的商品,卢瑟福竟然自己动手制作起来。他买来几个透镜,七拼八凑居然制成了一台照相机。他自己拍摄自己冲洗,成了一个小摄影迷。卢瑟福这种自己动手制作、修理的本领,对他后来的科学研究工作极为有用。在很多场合显得高人一筹。当卢瑟福远渡重洋到英国从事研究工作取得了一引进成绩后,他应邀到英国学术协会作报告,正当他以实验来证明自己的说法时,仪器突然出了故障。卢瑟福不慌不忙地抬起头来,对观众说:“出了一点小毛病,请大家休息5分钟,散散步或抽支香烟,你们回来时仪器就可以恢复正常了。”果然几分钟后又能看他的实验了。没有多年培养起来的动手能力和经验是很难有这样的自信心的。当时在场的一位一流物理学家对此颇有感慨:“这位年轻人(指卢瑟福)的前程将是无比远大的。”卢瑟福的母亲出身于知识家庭,她的父亲是一位很有才能的数学家,母亲也是一位教师。作为教师的母亲对孩子们的教育起着关键的作用。她的一举一动始终影响着孩子们的情绪。所以在 生活的重负面前,她始终都保持乐观的母亲任劳任怨,以自己对待生活中困难的态度教育孩子们,正是这种行动的教育使得卢瑟福始终保持刻苦学习和热爱劳动的本色。即使在成名之后,仍然保持着这种纯朴的本色。难怪有的记者在采访他之后称,卢瑟福除了那双充满智慧的眼睛之外,其余的地方和典型的农民几乎没有什么区别。幼年的卢瑟福与他的兄弟姐妹没有什么太明显的区别。如果说有什么不同之处,那就是喜欢思考、喜欢读书。在卢瑟福一生中曾起过重要作用的一本书,便是他10岁的时候从他母亲那儿得到的、由曼彻斯特大学教授巴尔佛?司徒华写的教科书《物理学入门》,这本书开始把他引上研究科学的道路。这本书不单单给读者一些知识,为了训练智力,书中还描述了一系列简单的实验过程。卢瑟福为书中的内容所吸引并从中悟出了一些道理。即从简单的实验中探索出重要的自然规律,这些对卢瑟福一生的研究工作都产生了重大的影响。读完书之后,卢瑟福将自己的年龄和名字歪歪斜斜地写在书页上,那时他差1个月满11岁,推算起来是1882年7月。卢瑟福的母亲一直珍藏着这本教科书,并且常常自豪地捧着这本书向孩子讲述当年的故事。特别值得一提的是《物理学入门》一书的作者恰巧是汤姆逊在曼彻斯特时的老师,而汤姆逊又是卢瑟福在剑桥大学读研究生的导师。 读书和思考一直伴随着卢瑟福一生。他成为一个硕果累累的大科学家之后,仍然很重视读书和思考。有一天深夜,卢瑟福看到实验室亮着灯,就推门进去,看见一个学生在那里,问道:“这么晚了,你还在干什么?”学生回答说:“我在工作。”当他得知学生从早到晚都在工作时,很不满意地反问:“那你什么时间思考问题呢?”靠奖学金读书的孩子卢瑟福5岁时上了泉林村小学,他的母亲和外祖母都曾在此任教,后来由于家庭搬迁,他又转学到福克斯希尔村小学。卢瑟福的父母很重视子女的教育尽管家庭收入仅够糊口还是钱供他读书。为此一家人节衣缩食,在生活上非常刻苦,一直供他念完大学。许多年后,在一个很隆重的宴会上,卢瑟福十分感慨的说:“如果不是我的父亲和母亲,我永远也不会有今天的成绩。”由于家庭的收有限,相当一部分学费要靠自己来解决。上小学的时候,卢瑟福就利用暑假参加劳动。兄弟几人一个期就赚了13英镑。这些钱差不多够一个学期的学费了。卢瑟福深深地理解父母的困难。他知道,要想上学就要靠自己劳动挣钱,后来他听说学习成绩优秀就可以得到奖学金,就更加努力学习。他学习的时候特别专心致志,即使有人用书本敲他的脑袋也不会分散他的注意力。离开小学之后,卢瑟福大部分的学费要靠奖学金了,他参加了竞争一项州政府奖学金的考试获得奖学金就可以进入纳尔逊学院读书,可以免交学费并提供食宿,结果卢瑟福以580分(满分600分)的成绩赢得了这项奖学金。在纳尔逊学院学习期间,他获得了很多奖励并在最后一年获得进入新西兰大学深造的奖学金。在获奖的10人中,他名列第4名。进入新西兰大学坎特伯雷学院之后,卢瑟福更加努力学习,他的数学和物理成绩都是名列前茅。由于学习成绩优秀,大学毕业时卢瑟福获得了文学学士、理科学士和硕士学位,要想挣钱养家已经是足够了,但是卢瑟福决心在科学研究中取得更大的成绩。在校学习的时候他已经申请了进入剑桥深造的奖学金,因为该项奖学金是隔年一次的,所以他大学毕业后又在学校里继续研究一年。 卢瑟福申请的是大英博览会奖学金,它是由1851年在英国伦敦海德公园水晶宫举办的国际博览会所赚来的钱设立的奖学金。这项奖学金的目的是授予学习成绩特别出色,具有培养前途的学生,使他们能够进入久享盛名的英国高等学府深造。凡属英联邦国家的学生,都有机会得到这笔奖学金。卢瑟福参加了这项考试,结果卢瑟福和一个叫麦克劳林的人都具备了录取条件,但名额只有一个。基金委员会经过争论决定把奖学金授予麦克劳林。卢瑟福只好回家等待以后的机会了。 1895年4月的一天,卢瑟福正在菜园里挖马铃薯。母亲高兴地向菜园跑去,手里拿着电报纸,并在空中不断摇动,用劲地叫喊:“你取上啦!你取上啦!”卢瑟福不明白母亲在干什么,“谁取上了?取上什么了?”卢瑟福不解地问道。等他看到了电报才明白,基金委员会改变了主意把这项奖学金授予他了。他立即扔下手中的铁锹,高兴得跳起来:“这也许是我要挖的最后一个马铃薯吧!”原来情况发生了变化,麦克劳林已经结婚,而基金会所给的奖学金无论如何也不能养活两个人,麦克劳林决定留在新西兰。这年9月,卢瑟福筹借了路费,告别了双亲,登上了开往英国的客轮,开始了他献身科学的航程。1898年,卢瑟福被指派担任加拿大麦吉尔大学物理系主任,在那里的工作使他获得了1908年的诺贝尔化学奖。他证明了放射性是原子的自然衰变。但他不是很高兴,因为他自认为是物理学家,而非化学家。他的一个名言是,“科学只有物理一个学科,其他不过相当于集邮活动而已”。他注意到在一个放射性物质样本里,一半的样本衰变的时间几乎是不变的, 这就是该物质的“半衰期”,并且他还就此现象建立了一个实用的方法,以物质半衰期作为时钟来检测地球的年龄,结果证明地球要比大多数科学间认为的老的多。1909年卢瑟福在英国曼彻斯特大学同他的学生 Marsden 用α粒子撞击一片薄金箔,他发现大部分的粒子都能通过金箔,只有极少数会跳回。他笑说这是海军用15吋巨炮射击一张纸,但炮弹却会被弹回而打到自己。最后他提出了一个类似于大阳系行星系统的原子模型,认为原子空间大都是空的,电子像行星围绕原子核旋转,推翻了当时所使用的梅子布丁原子模型。1911年3 月,卢瑟福在曼彻斯特文学与哲学学会的会议上宣布他的意外发现,同年5月,他将论文发表于“哲学杂志”。1919年,汤姆孙在升任三一学院院长时,推荐卢瑟福回到剑桥大学出任卡文迪许实验室的主任,在那里他培育出大批的诺贝尔奖得主,他的学生有丹麦的波尔(N. H. D. Bohr)、德国的哈恩、新西兰的马斯顿、前苏联的卡皮察(P.L. Kapitsa)、澳大利亚的奥立芬特,以及英国的乍得威克和考克饶夫(J. P.Cockcroft)等十一位诺贝尔奖得主。卢瑟福是一位伟大的导师,1933年他的学生狄拉克与薛定谔共同获得诺贝尔物理奖。狄拉克却对卢瑟福说他不想出名,他想拒绝这个荣誉。卢瑟福对他说:“如果你做这样做,你会更出名,人家更要来麻烦你。”卢瑟福被称为近代原子核物理学之父。

1911年,卢瑟福发表了题为“物质的a和β粒子的散射和原子结构”的论文,他在a粒子散射实验结论的基础之上提出了原子的有核模型和原子核概念。这一实验是近代物理学发展史上最具影响力的著名实验之一。该实验中观察到的a粒子大角度散射现象否定了汤姆逊的原子模型,为原子的核式模型的建立奠定了基础。

卢瑟福出生于新西兰的一个偏僻小村庄,他从小就向往解释宇宙,向往发明,向往创造。 1889他考上了新西兰大学。大学期间,他就自己动手制成一种灵敏的检波器,试验了在新西兰大地上的第一次电报,并发表了电磁学方面的论文。凭着这几篇论文,大学毕业几年后,卢瑟福到了剑桥大学的卡文迪实验室。 在这里,他接受了老师汤姆孙的建议,开始了对原子的探试。探试的第一步就是抓住镭放出的射线,看它到底是些什么东西,然后就可以顺藤摸瓜追踪原子内的秘密。 卢瑟福天生是个实验的好手,他立即设计了一个实验,用一个铅块,钻上小孔,孔内放一点镭。这样射线只能从这个小孔里发出,然后将射线放到一个磁场里。 奇怪的现象出现了,一束射线立即分成三股,一股靠近N极偏转,一股靠近S极偏转,还有一股不偏不倚一直向前,卢瑟福给它们取名为α、β和γ射线。经过测定,β射线就是老师汤姆孙发现的.电子流,γ射线就是伦琴发现的X光,居里夫妇发现的放射性就是α、β和γ射线。好个卢瑟福,真是出手不凡,19世纪最后10年的三大发现他在一个实验里就全部得到解释。 当他兴冲冲地把这些新发现告诉老师汤姆孙时,老师自然很高兴,顺便还告诉卢瑟福一个消息:加拿大麦克吉尔大学物理系派人来剑桥聘请教授,他认为卢瑟福是最好的人选。 1898年卢瑟福横渡大西洋到了加拿大,在这里,他遇到一个比他小七岁的年轻助手索迪,索迪的化学知识很丰富,这正好弥补了卢瑟福化学知识上的不足。 这时,卢瑟福又想起了在剑桥时遇到的一个老问题,α粒子从所具有的电量和质量来看很像元素氦,有索迪做助手,卢瑟福马上开始验证。实验结果出来了,α射线果然就是氦流。那么镭放出α射线后剩下的又是什么呢?经实验,竟然又是一种新元素氡。于是卢瑟福宣布放射性既是原子现象,又是产生新物质的化学变化的伴随物。 1907年,为了表彰卢瑟福的这一重大发现,诺贝尔评审委员会授予他诺贝尔化学奖。你可能会莫名其妙,物理学家怎么获得了化学奖。没错,正如卢瑟福所说:“这真是太妙了!我一生中研究了许多变化,但是最大的变化是这一次,我从一个物理学家变成了一个化学家。”

约瑟夫亨利发表的论文

字母H的含意 大写H代表在化学中,表示元素氢的化学符号 。在数学几何中,小写h代表高度。在哈勃定律中,H表示哈勃常数。在量子物理学中,表示“哈密顿算符”,小写h代表普朗克常数。在国际单位制中,电感单位的亨利 。在医药批准字号中,表示化学药品。海洛英的缩写 H在网络里则表示淫秽色情的意思。原意是日文“Hentai”的缩写,即变态,由于色情游戏是“Hentai-Game”,便由此得名。H为“HIGH”的缩写,既高潮,为ML(MAKE LOVE)与工口相同。小写h代表在国际单位制词头,h表示hecto,即100(10^2) 音标国际音标[h]是清喉擦音 [..]是清会厌擦音 [..]是唇硬腭无擦通音 汉语拼音“h”是清舌根擦音 (国际音标[x]) 字符编码字符编码 ASCII Unicode EBCDIC 大写 H 72 0048 200 小写 h 104 0068 136 参看H,在网络上表示"黄"的缩写。另一说源于日本语Hentai「变态(変态)」借代的用语,一般用于日本的色情事物之上,特别是日本动画及漫画,不少欧美地区的御宅族也会使用这个单字.例如,H电影,H游戏等同时``H..也可以表示性的意思``修饰自H的字母�0�1�0�2 — �5�8�5�9 — �5�2�5�3 — �0�7�0�8 — �5�0�5�1 — �5�6�5�7 — �5�4�5�5 — �0�3�0�4 其他字母中的相近字母..(希腊字母 Eta) ..(西里尔字母 Shha,在哈萨克语使用) 与H相似但无任何关系的字母..(西里尔字母 En)qing

1856年8月23日上午,数百名科学家、发明家和好奇者聚集在纽约奥尔巴尼,参加迄今为止出席人数最多的美国科学促进协会第八届年会。AAAS年会汇集了来自美国各地的科学家,分享突破性的新发现,讨论各自领域的进展,并探索新的调查领域。然而,这次特别的会议并没有发表任何高质量的论文,只有一个明显的例外。 相关内容改变了我们教授地理的方式的女性遇到了计算机科学家你应该感谢你的智能手机的气象应用17世纪测量星星的女天文学家相信:玛丽·塔普改变了地质学永远的例外是一篇题为“影响太阳光线热量的环境”的论文,作者是尤尼斯·富特。在两页轻快的文章中,富特的论文通过实验证明了太阳对某些气体的影响,并首次将这些气体与地球大气的相互作用理论化,从而预见了气候科学的革命。在1856年9月出版的《科学美国人》杂志的一篇题为“科学女性”的专栏文章中,Foote以“实践实验”支持自己的观点而受到赞扬。作者们指出:“我们很高兴地说,这是一位女士做的。”Foote的论文展示了太阳光线在不同的气体通过一系列的实验使用一个空气泵,四个温度计,两个玻璃缸。首先,Foote在每个气缸中放置了两个温度计,并使用气泵从一个气缸中排出空气,然后将其冷凝到另一个气缸中。让两个钢瓶达到相同的温度,然后她把钢瓶和温度计放在阳光下,测量温度变化,一旦加热和在不同的水分状态下。她用氢气、普通空气和二氧化碳重复了这个过程,所有这些都是在暴露在太阳下后被加热的。回顾地球的历史,Foote解释说“这种气体的大气会给我们的地球一个高温。。。在它的一个历史时期,空气与它混合的比例比现在更大,它自身的作用和重量的增加必然导致温度升高。”在测试的气体中,她得出结论,碳酸吸收的热量最多,最终温度为125华氏度。Foote比她早了好几年时间。她所描述和理论的是地球大气的逐渐变暖,我们今天称之为温室效应。三年后,著名的爱尔兰物理学家约翰廷德尔发表了类似的结果,证明了某些气体的温室效应,包括碳酸。廷德尔的理论虽然在当时很有争议,但他认为北欧曾经被冰覆盖,但随着时间的推移,由于大气变化,逐渐融化。这为大气中二氧化碳随时间的变化以及二氧化碳排放对全球气候的影响奠定了基础。目前,廷德尔的作品被公认为现代气候科学的奠基,而Foote的遗存仍处于朦胧状态。“KDSPE”“KDSPS”为什么?不用说,19世纪不是一个容易成为女人和科学好奇的时代。由于妇女接受高等教育的机会有限,以及AAAS等科学机构(直到1850年都是男性)的把关,科学在很大程度上是男性主导的领域。即使是史密森学会,美国最重要的科学研究机构之一,也是建立在“增加和传播知识给人类”的条款上的(强调还说)。出生于1819年,这是Foote发现自己在航行的风景。 虽然对Foote的早期教育一无所知,但从她的实验中可以明显看出,她一定接受了某种形式的教育在高等科学教育中。她的出现,连同她的丈夫伊丽莎·富特,在1856年的AAAS会议上,是她在科学领域活动的第一次记录。不像许多其他科学协会,AAAS确实允许业余和妇女成为成员。1850年,天文学家玛丽亚米切尔(Maria Mitchell)成为第一位当选的女性成员,后来阿尔米拉菲尔普斯(Almira Phelps)和富特(Foote)也当选,尽管没有获得常任理事国的选举。但是,尽管这个社会表面上是开放的,但社会内部却存在等级制度。历史学家玛格丽特·罗西特(Margaret Rossiter)是《美国女科学家》三卷丛书的作者,她指出,《美国科学促进会》几乎只为男性保留了“专业”或“研究员”的头衔,从而在男性和女性成员之间产生了区别,尽管妇女被视为仅仅是成员,这些性别差异在8月23日的会议上得到了强调,当时Foote不被允许阅读自己的论文。相反,她的工作是由史密森学会的约瑟夫·亨利教授介绍的。(相比之下,富特的丈夫能够阅读他的论文,也能阅读有关气体的论文。)在会上,亨利在富特的论文中附加了自己的序言:“科学不是国家,也不是性别。女人的领域不仅包括美丽和有用的东西,而且包括真实的东西。”这篇旨在赞美富特的介绍,比任何东西都更突出了她作为男人海洋中的女人的不同,表明她在男人当中的存在确实是不寻常的,需要证明。甚至《科学美国人》对Foote论文的赞誉也出现在AAAS会议报告后两页的专栏中。尽管亨利和科学美国人似乎都认为富特在科学研究上是平等的,但她仍然与其他人分开。更是雪上加霜,富特的论文被排除在协会的年度会议记录之外,这是在年度会议上发表的论文记录。在美国建立科学体系的过程中,历史学家萨利·格雷戈里·柯尔斯泰特(Sally Gregory Kohlstedt)给出了一些解释,解释了为什么会出现这种情况。1850年代,,AAAS的领军人物亚历山大·达拉斯·巴赫(Alexander Dallas Bache)推动了开放会员制。但巴赫还对《美国科学院院刊》上发表的所有论文进行了严格和批判性的审查,以培养美国科学的特定形象和话语权;即使该协会的一个地方委员会批准发表论文,巴赫所服务的美国科学院常务委员会也可以拒绝这些论文。只需浏览一下会员名单和发表的论文,就可以清楚地看出,这张照片和那张声音主要是男性。 是Foote论文的唯一一份完整发表在《美国科学与艺术杂志》上,如果没有这本外部出版物,只有亨利的阅读版本会保留下来。与本次会议上发表的其他论文相比,Foote的——一个严谨实验和合理推理的证明——应该被纳入1856年的收藏中。

亨利出生在纽约州奥尔巴尼一个贫穷的工人家庭。13岁失学,后来在钟表铺当学徒。他刻苦自学,考进了奥尔巴尼学院,在那里他学习化学、解剖学和生理学,准备当一名医生,可是,毕业以后他却在奥尔巴尼学院当上了一名自然科学和数学讲师。1832年,亨利成为新泽西学院(即现今的普林斯顿大学)的自然哲学教授,一直到1846年离开那儿为止。自1846至1878年间,他是新成立的斯密森研究所的秘书和第一任所长,负责气象学研究。1867年起,任美国科学院院长,直到1878年5月13日在华盛顿逝世。亨利在物理学方面的主要成就是对电磁学的独创性研究。①强电磁铁的制成,为改进发电机打下了基础1827年他用纱包铜线在一铁芯上绕了两层,然后在铜线中通电,发现仅重3公斤的铁芯竟然吸起了300公斤重的铁块,远远超过一般天然磁铁的吸引力。电转变为磁产生如此大的力量,立即深深地吸引了享利继续对这些电磁现象进行探讨。1829年亨利对英国发明家威廉·史特京(1783-1850)发明的电磁铁作了改进,他把导线用丝绸裹起来代替史特京的裸线,使导线互相绝缘,并且在铁块外缠绕了好几层,使电磁铁的吸引作用大大增强。后来他制作的一个体积不大的电磁铁,能起一吨重的铁块。②电磁感应现象的发现,比法拉第早一年1830年8月,亨利在电磁铁两极中间放置一根绕有导线的条形软铁棒,然后把条形铁棒上的导线接到检流计上,形成闭合回路。他观察到,当电磁铁的导线接通的时候,检流计指针向一方偏转后回到零;当导线断开的时候,指针向另一方偏转后回到零。这就是亨利发现的电磁感应现象。这比法拉第发现电磁感应现象早一年。但是,当时世界科学的中心在欧洲,亨利正在集中精力制作更大的电磁铁,没有及时发表这一实验成果,因此,发现电磁感应现象的功劳就归属于及时发表了成果的法拉第,亨利失去了发明权。③发现了自感现象亨利对绕有不同长度导线的各种电磁铁的提举力做比较实验。他意外地发现,通有电流的线圈在断路的时候有电火花产生。第二年八月,亨利对这种现象又进行了研究。1832年他发表了《在长螺旋线中的电自感》的论文,宣布发现了电的自感现象。1837年,亨利访问了欧洲,与法拉第共同愉快地度过了许多日子。法拉第当时想做一个简单的实验使温差电偶产生火花。他把电偶的一端置于炽热的火炉上,另一端埋在冰块里,并将两根引线的线头相碰,但并未产生预想的结果。这时亨利把一根导线绕成线圈套在一根铁棒上,并把这个线圈接至到温差电偶的一根引线上,再使两根线头相碰,顿时爆出了耀眼的电火花。法拉第对此实验大加赞赏,大声问道:“你到底是怎么成功的?”于是亨利不得不向这位因发表电磁感应规律而闻名于世的科学家解释自感的道理,显然当时还没有一个欧洲人读过亨利几年前就发表的那些论文。1832年,他在研制有更强大吸引力的电磁铁时发现,绕有铁芯的通电线圈在断开电路时有电火花产生,这就是自感现象。他反复试验,搞清楚了产生这种现象的规律,于1835年又发表了解释自感现象的论文。4,无线电波的传播1842年亨利在实验室里安装了一个火花隙装置,在30多英尺处放一个线圈来接收能量,线圈和检流计相接,形成回路。当火花隙装置的电火花闪过的时候,和线圈相接的检流计指针就发生偏转。这个实验的成功,实际上实现了无线电波的传播。亨利的实验虽然比赫兹的实验早了40多年,但是当时的人们包括亨利自己在内,还认识不到这个实验的重要性。一些重要的发明和发现亨利为电报机的发明做出了贡献,实用电报的发明者莫尔斯和惠斯通都采用了亨利发明的继电器。 亨利把电磁铁改换成使用绝缘导线的强力电磁铁,用继电器把每个备有电池的电路串联起来,把文字信号中继转发出去,电路中的一条导线可用地线代替,而不需要两条往返导线。亨利实际上是电报的发明者,但是,不重名利的亨利没有申请专利权。这样,发明电报和荣誉就落到莫尔斯的头上。当然,莫尔斯发明的由点、划组成的“莫尔斯电码”,是他对电报的独特贡献。此外,亨利还发明了继电器、无感绕组等,他还改进了一种原始的变压器。亨利曾发明过一台象跷跷板似的原始电动机,从某种意义上来说这也许是他在电学领域中最重要的贡献。因为电动机能带动机器,在起动、停止、安装、拆卸等方面,都比蒸汽机来得方便。今天,电动机已成为电气时代的标志了。

代表一个人,心爱的人,H是他的名字中的一个字母

约瑟夫森的论文发表在

这就更能够充分地说明《易经》不但不是迷信,而且十分科学。而我仍中国人的祖先早就把“整个宇宙之理”放在自己的掌握之中! 整个宇宙空间就象个大“0”,他是虽什么都藏,有么都有。但这是在“万事万物”没有发生变化之前的情状。我们的前贤把它叫作“无极”;而“太极”就是万变之源,就象“123456789”,加上“0”就象“万事万物”在这个空间中的变化,但万变不离其中,即“要归0”!故中国人的前贤把它称为:1生2,2生3,3生万物。用这种方式去给人们说明宇宙之理! 其实包含在“万变万化”中,故人们可以将它叫做:“阴阳,正负,公母,刚柔”等,是一种代号或二物而岂,也从“无中(即无极)”而来!但它是“万变”之源。其大到无限,小也到无限,万事万物,它无所不包,无所不含。而任何一物都没有脱离这一空间的可能,而凡要“变化”则必须是“两面”,这就是“世间之事物”的原本之理!

公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。 公元1914年,英国科学家莫塞莱发现原子序数与元素辐射特征线之间的关系,奠定了X射线光谱学的基础。 公元1914年,德国科学家弗朗克与赫兹测量汞的激发电位。 1915年,丹麦科学家玻尔判定他们测的结果实际上是第一激发电位,这正是玻尔1913年定态跃迁原子模型理论的极好证据。 公元1914年,英国科学家查德威克发现β能谱。 公元1915年,在爱因斯坦的倡议下,荷兰科学家德哈斯首次测量回转磁效应。 公元1916年,荷兰科学家德拜提出X射线粉末衍射法。 公元1919年,英国科学家阿斯顿发明质谱仪,为同位素的研究提供重要手段。 公元1919年,卢瑟福首次实现人工核反应。 公元1919年,德国科学家巴克家森发现磁畴。 公元1922年,德国科学家斯特恩与盖拉赫使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。 公元1923年,美国科学家康普顿用光子和电子相互碰撞解释X射线散射中波长变长的实验结果,称康普顿效应。 公元1927年,美国科学家戴维森与革末用低速电子进行电子散射实验,证实了电子衍射。同年,英国科学家G.P.汤姆逊用高速电子获电子衍射花样,他们的工作为法国科学家德布罗意的物质波理论提供了实验证据。 公元1928年,卡文迪许实验室的印度科学家喇曼等人发现散射光的频率变化,即喇曼效应。 公元1931年,美国科学家劳伦斯等人建成第一台回旋加速器。 公元1932年,英国科学家考克拉夫特与爱尔兰科学家瓦尔顿共同发明高电压倍加器,用以加速质子,实现人工核蜕变。 公元1932年,美国科学家尤里将天然液态氢蒸发浓缩后,发现氢的同位素—氘的存在。 公元1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒子,质量大体与质子相等。据此曾安排实验,但末获成果。1930年,德国科学家玻特等人在α射线轰击铍的实验中,发现过一种穿透力极强的射线,误认为γ射线;1931年,法国科学家约里奥与伊仑·居里让这种穿透力极强的射线通过石蜡,打出高速质子。查德威克接着做了大量实验,并利用威尔逊云室拍照,以无可辩驳的事实说明这一射线即是卢瑟福预言的中子。 公元1932年,美国科学家安德森从宇宙线中发现正电子,证实狄拉克的预言。 公元1933年,美国科学家图夫建立第一台静电加速器。 公元1933年,英国科学家布拉凯特等人从云室照片中发现正负电子对。 公元1934年,前苏联科学家切仑柯夫发现液体在β射线照射下发光的一种现象,称切仑柯夫辐射。 公元1934年,法国科学家约里奥·居里夫妇发现人工放射性。 公元1936年,安德森等人发现μ介子。 公元1938年,德国科学家哈恩与史特拉斯曼发现铀裂变。 公元1938年,前苏联科学家卡皮查用实验证实液氦的超流动性。 公元1939年,奥地利裔美国科学家拉比等人用分子束磁共振法测核磁矩。 公元1940年,美国科学家开尔斯特等人用分子建造第一台电子感应加速器。 公元1946年,美国科学家珀塞尔用共振吸收法测核磁矩,布拉赫用核感应法测核磁矩,两人从不同的角度实现了核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。 公元1947年,德裔美国科学家库什精确测量电子磁矩,发现实验结果与理论预计有微小偏差。 公元1947年,美国科学家兰姆与雷瑟福用微波方法精确测出氢原子能级的差值,发现英国科学家狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的发展提供了实验依据。 公元1948年,美国科学家肖克利、巴丁与布拉顿共同发明晶体三级管。 公元1952年,美国科学家格拉塞发明气泡室,比威尔逊云室更为灵敏。 公元1954年,美国科学家汤斯等人制成受激辐射的微波放大器——曼塞。 公元1955年,美国科学家张伯伦与希格里等人发现反质子。1957年,希格里等人又发现反中子。 公元1956年,华裔美国科学家吴健雄等人实验验证了华裔美国科学家李政道、杨振宁提出的在弱相互作用下宇称不守恒的理论(1956年)。实验方法是将钴-60置于极低温(0.01K)的环境中测量β蜕变。 公元1958年,德国科学家穆斯堡尔实现γ射线的无反冲共振吸收(穆斯堡尔效应)。 公元1960年,美国科学家梅曼制成红宝石激光器,实现了肖洛和汤斯1958年的预言。 公元1962年,英国科学家约瑟夫森发现约瑟夫森效应。 另附 1900--1909 1900年,瑞利发表适用于长波范围的黑体辐射公式。 1900年,普朗克(M.Plank,1858—1947)提出了符合整个波长范围的黑体辐射公式,开 用能量量子化假设从理论上导出了这个公式。 1900年,维拉尔德(P.Willard,1860一1934)发现γ射线。 1901年,考夫曼(W.Kaufmann,1871—1947)从镭辐射测射线在电场和磁场中的偏转,从 而发现电子质量随速度变化。 1901年,理查森(O.W.Richardson,1879—1959)发现灼热金属表面的电子发射规律。 后经多年实验和理论研究,又对这一定律作进一步修正。 1902年,勒纳德从光电效应实验得到光电效应的基本规律:电子的最大速度与光强无关, 为爱因斯坦的光量子假说提供实验基础。 1902年,吉布斯出版《统计力学的基本原理》,创立统计系综理论。 1903年,卢瑟福和索迪(F.Soddy,1877一1956)发表元素的嬗变理论。 1905年,爱因斯坦(A.Einstein,1879—1955)发表关于布朗运动的论文,并发表光量子 假说,解释了光电效应等现象。 1905年,朗之万(P.Langevin,1872—1946)发表顺磁性的经典理论。 1905年,爱因斯坦发表《关于运动媒质的电动力学》一文,首次提出狭义相对论的基本原 理,发现质能之间的相当性。 1906年,爱因斯坦发表关于固体热容的量子理论。 1907年,外斯(P.E.Weiss,1865—1940)发表铁磁性的分子场理论,提出磁畴假设。 1908年,昂纳斯(H.Kammerlingh—Onnes,1853—1926)液化了最后一种“永久气体”氦。 1908年,佩兰(J.B.Perrin,1870—1942)实验证实布朗运动方程,求得阿佛伽 德罗常数。 1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分别精确测量出电子质量 随速度的变化,证实了洛仑兹-爱因斯坦的质量变化公式。 1908年,盖革(H.Geiger,1882—1945)发明计数管。卢瑟福等人从粒子测定电子电荷e 值。 1906—1917年,密立根(R.A.Millikan,1868—1953)测单个电子电荷值,前后历经11 年,实验方法做过三次改革,做了上千次数据。 1909年,盖革与马斯登(E.Marsden)在卢瑟福的指导下,从实验发现粒子碰撞金属箔产 生大角度散射,导致1911年卢瑟福提出有核原子模型的理论。这一理论于1913年为盖 革和马斯登的实验所证实。 1910--1919 1911年,昂纳斯发现汞、铅。锡等金属在低温下的超导电性。 1911年,威尔逊(C.T.R.Wilson,i869—1959)发明威尔逊云室,为核物理的研究提供 了重要实验手段。 1911年,赫斯(V.F.Hess,1883—1964)发现宇宙射线。 1912年,劳厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W. Friedrich),尼平 (P.KniPning,1883—1935)进行X射线衍射实验,从而证实了X射线的波动性。 1912年,能斯特(W. Nernst,1864—1941)提出绝对零度不能达到定律(即热力学第三定 律)。 1913年,斯塔克(J.Stark,1874—1957)发现原子光谱在电场作用下的分裂象(斯塔克效应)。 1913年,玻尔(N.Bohr,1885—1962)发表氢原子结构理论,解释了氢原子光谱。 1913年,布拉格父子(W.H.Bragg,1862—l942;W.L.Bragg,1890—1971)研究X射 线衍射,用X射线晶体分光仪,测定X射线衍射角,根据布拉格公式:Zdsin6=算出晶 格常数d。 1914年,莫塞莱(H.G.J.Moseley,1887—1915)发现原子序数与元素辐射特征线之间 的关系,奠定了X射线光谱学的基础。 1914年,弗朗克(J. Franck,1882——1964)与 G.赫兹(G.Hertz,1887—1975)测 汞的激发电位。 1914年,查德威克(J.Chadwick,1891—1974)发现能谱。 1914年,西格班(K.M.G.Siegbahn,1886—1978)开始研究 X射线光谱学。 1915年,在爱因斯坦的倡仪下,德哈斯(W.J.de Hass,1878—1960)首次测量回转磁效 应。 1915年,爱因斯坦建立了广义相对论。 1916年,密立根用实验证实了爱因斯坦光电方程。 1916年,爱因斯坦根据量子跃迁概念推出普朗克辐射公式,同时提出了受激辐射理论,后 发展为激光技术的理论基础。 1916年,德拜(P.J.W.Debye,1884—1966)提出 X射线粉末衍射法。 1919年,爱丁顿(A.S.Eddington,1882—1944)等人在日食观测中证实了爱因斯坦关于 引力使光线弯曲的预言。 1919年,阿斯顿(F.W.Aston,1877—1945)发明质谱仪,为同位素的研究提供重要手段。 1919年,卢瑟福首次实现人工核反应。 1919年,巴克豪森(H.G.Barkhausen)发现磁畴。 1920--1929 1921年,瓦拉塞克发现铁电性。 1922年,斯特恩(O.Stern,1888—1969)与盖拉赫(W.Gerlach,1889—1979) 使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。 1923年,康普顿(A.H.Compton,1892—1962)用光子和电子相互碰撞解释X射线散射中 波长变长的实验结果,称康普顿效应。 1924年,德布罗意(L.de Broglie,1892—1987)提出微观粒子具有波粒二象性的假设。 1924年,玻色(S.Bose,1894—1974)发表光子所服从的统计规律,后经爱因斯坦补充建立了玻色一爱因斯坦 统计。 1925年,泡利(W.Pauli,1900—1958)发表不相容原理。 1925年,海森伯(W.K.Heisenberg,1901—1976)创立矩阵力学。 1925年,乌伦贝克(G.E.Uhlenbeck,1900--)和高斯密特(S.A.Goudsmit,1902—1979)提出电子自旋假设。 1926年,薛定愕(E.Schrodinger,1887—1961)发表波动力学,证明矩阵力学和波动力 学的等价性。 1926年,费米(E.Fermi,1901—1954)与狄拉克(P.A.M.Dirac,1902—1984)独立 提出费米-狄拉克统计。 1926年,玻恩(M.Born,1882—1970)发表波函数的统计诠释。 1927年,海森伯发表不确定原理。 1927年,玻尔提出量子力学的互补原理。 1927年,戴维森(C.J.Davisson,1881—1958)与革末(L.H.Germer,1896-- 1971)用低速电子进行电子散射实验,证实了电子衍射。同年,G.P.汤姆生 (G.P.Thomson,1892—1975)用高速电子获电子衍射花样。 1928年,拉曼(C.V.Raman,1888--1970)等人发现散射光的频率变化,即拉曼效应。 1928年,狄拉克发表相对论电子波动方程,把电子的相对论性运动和自旋、磁矩联系了起 来。 1928—1930年,布洛赫(F.BIoch,1905—1983)等人为固体的能带理论奠定了基础。 1930--1939 1930—1931年,狄拉克提出正电子的空穴理论和磁单极子理论。 1931年,A.H.威尔逊(A.H.Wilson)提出金属和绝缘体相区别的能带模型,并预言介 于两者之间存在半导体,为半导体的发展提供了理论基础。 1931年,劳伦斯(E.O.Lawrence,1901—1958)等人建成第一台回旋加速器。 1932年,考克拉夫特(J.D.Cockcroft,1897—1967)与沃尔顿(E.T.Walton)发明高 电压倍加器,用以加速质子,实现人工核蜕变。 1932年,尤里(H.C.Urey,1893—1981)将天然液态氢蒸发浓缩后,发现氢的同位素 ——氘的存在。 1932年,查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒 子,质量大体与质予相等。据此曾安排实验,但未获成果。 193O年,玻特(w.B大成,18盯一1的7)等人在。射线轰击被的实验中,发现过一种穿 透力极强的射线,一误认为、射线,1931年约里奥(F.Joliot,1900—1958)与伊 伦·居里(1.Curie,1897—1956)让这种穿透力极强的射线,通过石蜡,打出高速 质子。查德威克接着做了大量实验,并用威尔逊云室拍照,以无可辩驳的事实说明这 一射线即是卢瑟福预言的中子。 1932年,安德森(C.D.Anderson,1905一)从宇宙线中发现正电子,证实狄拉克的预言。 1932年,诺尔(M.Knoll)和鲁斯卡(E.Ruska)发明透射电子显微镜。 1932年,海森伯、伊万年科(Д.Д.Иваненко)独立发表原子核由质子和中子 组成的假说。 1933年,泡利在索尔威会议上详细论证中微于假说,提出β衰变。 1933年,盖奥克(W.F.Giauque)完成了顺磁体的绝热去磁降温实验,获得千分之几开的 低温。 1933年,迈斯纳(W.Meissner,1882—1974)和奥克森菲尔德(R.Ochsenfeld)发现超 导体具有完全的抗磁性。 1933年,费米发表p衰变的中微子理论。 1933年,图夫(M.A.Tuve)建立第一台静电加速器。 1933年,布拉开特(P.M.S.Blackett,1897—1974)等人从云室照片中发现正负电子对。 1934年,切仑柯夫(Π.A.Черенков)发现液体在β射线照射下发光的一种现象, 称切仑柯夫辐射。 1934年,约里奥-居里夫妇发现人工放射性。 1935年,汤川秀村发表了核力的介于场论,预言了介子的存在。 1935年,F.伦敦和H.伦敦发表超导现象的宏观电动力学理论。 1935年,N.玻尔提出原子核反应的液搞核模型。 1938年,哈恩(O.Hahn,1879—1968)与斯特拉斯曼(F.Strassmann)发现铀裂变。 1938年,卡皮查(П.Л.Капича,1894--)实验证实氦的超流动性。 1998年,F.伦敦提出解释超流动性的统计理论。 1939年,迈特纳(L.Meitner,1878—1968)和弗利行(O.Frisch)根据获滴核模型指出, 哈恩-斯特拉斯曼的实验结果是一种原子核的裂变现象。 1939年,奥本海默(J.R.Oppenheimer,1904—1967)根据广义相对论预言了黑洞的存在。 1939年,拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法测核磁矩。 1940--1949 1940年,开尔斯特(D.W.Kerst)建造第一台电子感应加速器。 1940—1941年,朗道(Л.И.Ландау,1908—1968)提出氦Ⅱ超流性的量子理论。 1941年,布里奇曼(P.W.Bridgeman,1882—1961)发明能产生 10万巴高压的装置。 1942年,在费米主持下美国建成世界上第一座裂变反应堆。 1944—1945年,韦克斯勒(ВИВеклер.1907--1966)和麦克米伦(E.M.McMillan, 1907—)各自独立提出自动稳相原理,为高能加速器的发展开辟了道路。 1946年,阿尔瓦雷兹(L.W.Alvarez,1911--)制成第一台质子直线加速器。 1946年,柏塞尔(E.M.Purcell)用共振吸收法测核磁矩,布洛赫(F.Bloch,1905—1983)用核感应法测核磁矩,两人从不同的角度实现核磁共振。这种方法可以使核磁矩和磁场的测量精度大大提高。 1947年,库什(P.Kusch)精确测量电子磁矩,发现实验结果与理论预计有微小偏差。 1947年,兰姆(W.E.Lamb,Jr.)与雷瑟福(R.C.Retherford)用微波方法精确测出氢原子能级的差值,发现狄拉克的量子理论仍与实际有不符之处。这一实验为量子电动力学的 发展提供了实验依据。 1947年,鲍威尔(C.F.Powell,1903—1969)等用核乳胶的方法在宇宙线中发现π介子。 1947年,罗彻斯特和巴特勒(C.Butler,1922--)在宇宙线中发现奇异粒子。 1947年,H,P.卡尔曼和J.W.科尔特曼等发明闪烁计数器。 1947年,普里高金(I.Prigogine,1917--)提出最小熵产生原理。 1948年,奈耳(L.E.F.Neel,1904--)建立和发展了亚铁磁性的分子场理论。 1948年,张文裕发现μ子系弱作用粒子,并发现了μˉ子原子。 1948年,肖克利(w.Shockley),巴丁(J.Bardeen)与布拉顿(W.H.Brattain) 发明晶体三极管。 1948年,伽柏(D.Gabor,1900—1979)提出现代全息照相术前身的波阵面再现原理。 1948年,朝永振一郎、施温格(1.Schwinger)费因曼(R.P.Feynman,1918-- 1988)等分别发表相对论协变的重正化的量子电动力学理论,逐步形成消除发散困难的重 正化方法。 1949年,迈耶(M.G.Mayer)和简森(J.H.D.Jensen)等分别提出核壳层模型理论。 1950-1959 ???? 1960--现在 1960年,梅曼(T.H.Maiman)制成红宝石激光器,实现了肖洛(A.L.Schawlow)和 汤斯1958年的预言。 1962年,约瑟夫森(B.D.Josephson)发现约瑟夫森效应。 1964年,盖耳曼(M.Gell-Mann)等提出强子结构的夸克模型。 1964年,克洛宁(J.W.Cronin)等实验证实在弱相互作用中CP联合变换守 恒被破坏。 1967—1968年,温伯格(S.Weinberg)、萨拉姆(A.salam)分别提出电弱统一理论标准模型。 1969年,普里高金首次明确提出耗散结构理论。 1973年,哈塞尔特(F.J.Hasert)等发现弱中性流,支持了电弱统一理论。 1974年,丁肇中(1936--)与里希特(B.Richter,1931--)分别发现J/ψ粒子。 1980年,克利青(V.Klitzing,1943--)发现量子霍尔效应。 1983年,鲁比亚(C.Rubbia,1934--)和范德梅尔(S.V.d.Meer,1925--)等人在欧洲核子研究中心发现W±和Z0粒子。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。 公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。 公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。 公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。 公元1801年,英国科学家托马斯·杨用干涉法测光波波长。 公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。 公元1808年,法国科学家马吕斯发现光的偏振现象。 公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。 公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。 公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。 公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。 公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。 公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。 公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。 公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。 公元1830年,诺比利发明温差电堆。 公元1831年,法拉第发现电磁感应现象。 公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。 公元1835年,美国科学家亨利发现自感,1842年发现电振荡放电。

这个去看下《物理学史》郭奕玲 ,沈慧君写的。主要介绍力学与热学基本定律的形成;电磁学和光学的发展; 19—20世纪之交物理学的新发现和物理学革命;相对论的建立和发展;早期量子论;玻尔原子理论的渊源和发展;波粒二象性;量子力学的建立和发展;原子核和粒子物理学的发展;激光和固体物理发展简史;... 侧重介绍近代物理学史。

超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。 然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。 超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。 在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。 在普通导体中会发生什么情况 上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。 超导体会发生什么变化 超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。 超导体 超导体,气体液化问题是19世纪物理学的热点之一。1911年昂内斯发现:汞的电阻在42K左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。 直到50年后,人们才获得了突破性的进展,“BCS"理论的提出标志着超导电性理论现代阶段的开始“BCS"理论是由美国物理学家巴丁、库珀和施里弗于1957年首先提出的,并以三位科学家姓名第一个大写字母命名这一理论。这一理论的核心是计算出超导体中存在电子相互吸引从而形成一种共振态,即存在“电子对”。 1962年英国剑桥大学研究生约瑟夫森根据“BCS”理论预言,在薄绝缘层隔开的两种超导材料之间有电流通过,即“电子对”能穿过薄绝缘层(隧道效应);同时还产生一些特殊的现象,如电流通过簿绝缘层无需加电压,倘若加电压,电流反而停止而产生高频振荡。这一超导物理现象称为“约瑟夫森效应”。这一效应在美国的贝尔实验室得到证实。“约瑟夫森效应”有力的支持了“BCS理论”。因此,巴丁、库怕、施里弗荣获1972年诺贝尔物理奖。约瑟夫森则获得1973年度诺贝尔物理奖。 德国物理学家柏诺兹和瑞士物理学家缪勒从1983年开始集中力量研究稀土元素氧化物的超导电性。1986年他们终于发现了一种氧化物材料,其超导转变温度比以往的超导材料高出12度。这一发现导致了超导研究的重大突破,美国、中国、日本等国的科学家纷纷投入研究,很快就发现了在液氮温区(-196C以下)获得超导电性的陶瓷材料,此后不断发现高临界温度的超导材料。这就为超导的应用提供了条件。帕诺兹和缪勒也因此获1987年诺贝尔物理奖。 超导体处于主导地位 柯宝泰 超导体最重要的特点是电流通过时电阻为零,有一些类型的金属(特别是钛、钒、铬、铁、镍),当将其置于特别低的温度下时,电流通过时的电阻就为零。在普通的导体中,大部分通过导体的电流由于电阻的原因变为热能,因而被“消耗”掉了。在超导体中,实际上没有阻力,这样,一旦接通电流,从理论上讲就永远不会中断。在一个用超导体制成的电磁体(一个线圈,电流从中通过时产生电磁场)所构成的电路中,从理论上讲只送入一次电流,就可以在电路内不停的流动,从而就能使电磁场持续不断。当然,实际上是存在损耗的,不可能实现这类“永动”,不能不去考虑必需的能源投入,以使超导体能保持其产生零电阻现象所需要的底温状态(即-269℃,比绝对零度高出4℃)。 然而,从80年代初开始,人们发现了新材料。这种新材料能够在越来越接近常温的条件下形成超导体。为在这些物质的基础上获得超导体,各国都正在进行各种研究。这种材料同传统材料的区别在于它不需要冷却系统。 超导现象是1911年由荷兰人海克·卡默林·翁内斯(1853-1926)发现的。几十年中,没有人能做出解释。在理论上让人信服的解释出现在半个世纪之后,即在1957年由物理学家约翰·巴丁(晶体管发明者之一)、利昂·库珀和约翰施里弗宣布的“BCS理论”。电流是一种在金属离子,亦即带有多出的正电荷的原子周围流动的自由电子,电阻的产生是因为离子阻碍了电子的流动,而阻碍的原因又是由于原子本身的热振动以及它们在空间位置的不确定所造成的。 在超导体中,电子一对一对结合构成了所谓的“库珀对”,它们中的每一对都以单个粒子的形式存在。这些粒子抱成一团流动,不顾及金属离子的阻力,好像是液体一样在流动。这样,事实上就中和了任何潜在的阻力因素。 在普通导体中会发生什么情况 上边这幅图使电传导观念形象化了,电传导就如同球体(电子)运动一样。它在斜面上流动(斜面相当于一个导体)障碍物代表金属离子不规则的网状结构,它们不允许电子自由流动。这就是形成电阻的原因。电子与全属离子相撞,输出了它的部分能量,这些能量又转化为热量。 超导体会发生什么变化 超导体中电子两个两个地成组聚集在所谓的“库珀对”里面,它们又表现为单一的粒子,这同煤气分子能够聚集成液体状是同样的道理。超导电子作为整体以液体的形态表现出来,尽管存在着由于金属离子摆动和金属离子网的不规则带来的阻碍,它还是能够自由流动而不受影响。 人们早已知道,随着温度的降低,金属的电阻会减小,但是并不知道在温度接近绝对零度时,电阻会降低到什么程度。为了弄清这个问题,荷兰物理学家昂尼斯(1853~1926)开始对极低温度下金属电阻的研究。1911 年,他在测量低温下水银的电阻时发现,水银的电阻并不像人们预想的那样随着温度的降低连续地减小,而是当温度降到—269℃左右时突然完全消失。以后还发现一些金属或合金,当温度降到某一温度时,电阻也会变为零。这种现象叫做超导现象,能够发生超导现象的物质叫做超导体。物质的电阻变为零时的温度叫做这种物质的超导转变温度或超导临界温度,用TC 表示。物质低于TC 时具有超导性,高于TC 时失去超导性。 超导体的发现,在科学技术上有很大的意义。例如,由于现代生产的发展,对电能的需要迅速增长,有人统计,几乎每隔10 年对电能的需要就会增长一倍。但输电线有电阻,由于电流的热效应,使损失在输送电路上的电能大约超过。如果我们能够找到常温下的超导材料,就可以在发电、送电、电动机等方面大规模地利用超导性能,它将在现代技术的一切领域内引起一场巨大的变革。所以常温超导体的研究,是目前的一个重要课题,即使得不到常温超导体,能寻找到转变温度较高的超导体亦有重大意义。在这方面,我国的研究工作走在世界前列,1989 年已找到TC 达—141℃的超导材料,这是在高临界温度超导体研究方面取得的重大突破。

阿瑟阿什金发表的论文

以来激光束流相关的产生、控制技术的进展,利用光来操作微小物体的“光镊”随之登上了历史舞台。

光镊诞生的发想——光之力伴随着上世纪60年代以来激光束流相关的产生、控制技术的进展,利用光来操作微小物体的“光镊”随之登上了历史舞台。阿瑟·阿什金教授曾在贝尔实验室和朗讯科技公司任职,他很早就开始进行光操控微粒的研究工作,并最终于1986年公开了他的第一代光镊。

大家都知道光可以协助动物产生视觉,可以为植物提供能量来源,可以加热物体,但是对“光的力学领域”可能并不熟悉。实际上,光镊正是利用了“光的力”(Photon force/ radiation pressure,可以译为光压、辐射压等等),并诞生了举世瞩目的成果。

什么是“光的力”?中学物理中,我们已经了解了光同时具有波和粒子的双重性质,所谓波粒二象性。与人体被飞来的棒球击中后产生冲击一样,光的粒子即光子在接触物体后,同样会对该物体施加力的作用。你可能会感到奇怪,既然如此,我们为什么没有被强烈的日光或者探照灯击倒在地呢?这是因为,光的压力大概仅仅在10亿分之一到100亿分之一N这个数量级,所以说能用肉身感受到光压的人显然是不存在的。

然而,越是微小的物体,就越容易被微小的力所撼动。例如,红血球、细菌一类人体细胞或者微生物等等都对光压非常敏感。来自光的微小压力可以让微小的物体在不受到积压破坏的前提下进行移动。光镊是如何让光操控微粒成为可能的具体来说,光镊系统一般由照明光路和控制光路构成。

照明光路负责采集成像所需的信号,而控制光路用来控制和限制微小物体的运动。控制光路的核心是汇聚性能特别好的激光束发射系统。激光的特性之一就是可以被汇聚到一个十分微小的光斑上,这是普通光源所无法实现的。对于所要操控的微小物体来说,这种激光束汇聚形成的强聚焦光斑会形成一个类似“陷阱”的机构(称为三维光学势阱),微粒将会被束缚在其中。一旦微粒偏离这个“陷阱”中的能量最低点(即位置的稳定点),就会受到指向稳定点的恢复力作用,好像掉进了一个无法摆脱的“陷阱”一般。如果移动聚焦光斑,微粒也会随之移动,因此便能实现对微粒的捕获和操控。

诺贝尔物理学奖得主是阿瑟·阿什金,在96岁高龄才得奖,这都是他的坚持

24丨衰老:老不是问题,衰才是关键 1、96岁的阿瑟·阿什金 2018年诺贝尔物理学奖得主阿瑟·阿什金(Arthur Ashkin)在96岁获奖,是诺奖历史上获奖当时年龄最大的科学家。 96岁的阿瑟·阿什金 这个人非常聪明。 他发明了激光镊子,可以捏住原子、分子、病毒这样的小东西,而且还不会损伤它们。这个发明一定会给未来的医学研究带来巨大贡献。 就这样一个聪明人,你猜他最担心什么呢? 怕死吗?毕竟快100岁的人了。 不怕。那他怕啥呢? 当诺奖工作人员给阿什金打电话,通知他获奖的时候,老爷子还在地下室写论文。 他说:“我希望得奖以后,我自己发表论文能容易点。那些编辑可能会说,阿什金是个聪明人,得过诺贝尔奖。最好发表他的论文。” 其实,他说出了咱们的心声。 现代医学刚诞生的时候,人类平均寿命是30岁,到今天平均预期寿命已经接近80岁了。 医学用200多年的时间让人类寿命延长了大约50岁,而且这种趋势还在持续。 咱们这代人很可能活到100多岁。但问题是,咱们肯定不想病恹恹地活到100岁。 2、年龄只能反映衰老,不能定义衰老 那么,衰老是怎么回事呢? 这节课,我带你一起认识衰老。 有据支持的人类寿命极限是120岁 先说说人类的寿命极限。 根据已有的研究结果,最靠谱的结论是:人类寿命的极限是120岁。 有三个证据。 首先,人类历史上有证可考的最长寿人士,是一名法国女性,享年122岁。 其次,法国博物学家布丰(Georges Louis Leclere de Buffon)得出一个结论:物种寿命是生长期的5-7倍左右。 人类的生长期基本就到18岁,按照最高7倍推算,18乘以7等于126岁,与120岁接近。 另外,美国著名科学家海夫利克(Leonard Hayflick)发现,人类一生中细胞平均分裂次数为50次,每一次分裂产生的新细胞平均存活2.4年,50乘以2.4也等于120岁。 所以,如果没病、没灾、没意外,理论上人就有可能活到120岁。这是人类寿命的极限。 年龄只能反映衰老,不能定义衰老 听到这里你肯定很高兴。 但是,咱们经常听人说,岁数大了病就找上来,恢复起来也难,这就是衰老。 传统观念是把衰和老联系在一起的。 那么老就一定衰吗?未必。 2015年,我治疗过一个重症肺炎、呼吸衰竭的老奶奶,103岁。当时她已经气管插管,用上了呼吸机,我还给她下了病危通知书。 一般来说,病的严重程度和年龄相关。 75岁以上的老人治起来非常难。在病情这么重的情况下,几乎所有高龄病人的情况,都是一个器官还没治好,别的器官又出问题了。 原因你肯定知道,人老了,器官的代偿能力差了。所以死亡风险非常高。 但是这个病人不同,她对药物的反应很好。在病床上躺了两周,身上一点都不肿,咳嗽力量也大。 后来她的肺炎治愈了,拔了气管插管,高高兴兴回家了。 直到今天我都一直在想:这个病人不是我治得好,而是她只是老,但并不衰。 这个病人尽管103岁,但是长得却没那么老,咳嗽力量非常大。咳嗽,就是针对肺炎最好的自我修复能力。所以她能抵御疾病并且从中修复。 这是一个老而不衰的病例。 我们医院还治疗过一个早老症的病人。14岁的年龄,但是身体已经老化,面容苍老,眼球内陷,皮肤全是皱褶。 这种罕见病,身体老化速度是正常人的5-10倍。这个病人虽然不老,但是身体已经衰了。 这两个病例说明,衰老速度在个体之间存在显著差异。 多数时候,年龄大小可以在一定程度上反映衰老的程度。但是衰老的本质,却不是年龄大。 3、衰老的本质:自我修复能力下降 这么说很有道理。 但是话说回来,如果让人赶紧变老,死了之后赶紧给后代腾地方。那肯定没人愿意。 所以,我们有必要了解衰老的机制,以及怎么延缓衰老。 我把人类研究衰老的最新进展,总结了三个层面: 在前面的课程里讲过,很多因素会引起基因突变,基因突变就是一种损伤。 比如,细胞分裂的时候会有突变,接触紫外线、化学物质,人体产生的自由基也会引起基因损伤。 从这个角度看,癌症就是衰老的一种表现形式。 基因损伤的累积越来越多,就像染色体长满了伤疤一样,就会影响细胞的功能。 细胞功能异常会表现为很多方面: 比如,内分泌腺体分泌激素越来越少。女性雌激素水平下降,就会引起皮肤弹性下降、皮肤干燥、月经紊乱和骨质疏松。 再比如,细胞利用营养物质的能力也会下降。会出现糖尿病、高血脂。所以,这类病人并不完全是营养物质摄入过多,同时还有利用障碍。 另外,人体还会产生很多衰老细胞和有害的蛋白质,短时间内清除不掉。 比如,阿尔茨海默症病人的大脑里面,会沉积很多淀粉样蛋白和衰老细胞。 这些物质不仅“占着地方不干活”,还会引发慢性炎症反应,进一步加速阿尔茨海默症的发展。 无论是激素水平下降,利用营养物质的能力下降,还是清除衰老物质的能力下降,这些都是细胞功能下降的表现。 但是我们说过,人体可以自我修复。 刚才提到的103岁的老人,得了重症肺炎却能很快痊愈,靠的就是自我修复。 我们看看人体有哪些自我修复能力。 比如,基因损伤可以自我修复。 比如,深度睡眠的时候,大脑神经胶质细胞的体积可以缩小60%。就是为了给大脑内的液体留出空间,加快液体循环,清除衰老物质。这也是自我修复。 再比如,细胞损伤或者死亡之后,人体的干细胞会加快分裂,补充坏死的细胞。这还是自我修复。 只有自我修复能力下降了,它没办法修复基因损伤,没办法恢复细胞功能的时候,才是真的衰了。 毫无疑问,衰老带来了很多问题。 比如皮肤皱纹,行动能力下降,免疫力低,得了病很难痊愈,记忆力也会下降。 这是自然现象。 但是,目前最难解决的问题,是衰老带来的认知能力下降。 4、延缓衰老:激发自我修复和代偿 有一种严重危害老年人智力和身体的病——阿尔茨海默症。目前,中国阿尔茨海默症的患者有1000万左右。 有一个比喻:阿尔茨海默症的病人,他的大脑就像被什么东西慢慢吃掉一样。就这么一路地走向衰,走向亡。 对于导致这个病的因素,有的研究认为是大脑里的衰老细胞,也有的研究认为是口腔内的微生物。 但是直到今天,医学还没有搞清楚确切的发病机制。所以,目前也缺乏对于这个病的特效药物。 医学总会有攻克阿尔茨海默症的那一天。对于这个病,我也提不出太多的建议。 比如学会的某种技能、语言文字能力、判断力、联想力等等。晶体智力不会随着年龄下降。 比如记忆力、运算速度、推理能力等。这种智力是有生理基础的,所以,它在30岁以后会逐步下降。 比如,节食。少吃有利于清除大脑里的衰老细胞。 比如,运动可以帮助咱们清除体内废物,增强自我修复能力和代偿能力。 再比如,戒烟限酒可以减少基因损伤,也就是减慢了衰老的速度。 毫无疑问,咱们这代人可以活得更久。但是,要让生命更精彩还得靠自己。 今日得到: 1、阿什金说:我不担心年龄,我只担心不再聪明了。 2、咱们这代人很可能活到100多岁。但问题是,咱们肯定不想病恹恹地活到100岁。 3、根据已有的研究结果,最靠谱的结论是:人类寿命的极限是120岁。有三个证据。 所以,如果没病、没灾、没意外,理论上人就有可能活到120岁。这是人类寿命的极限。 4、年龄只能反映衰老,不能定义衰老。传统观念是把衰和老联系在一起的。多数时候,年龄大小可以在一定程度上反映衰老的程度。但是衰老的本质,却不是年龄大。 5、衰老的本质:自我修复能力下降。人类研究衰老的最新进展,总结了三个层面: 衰老的第一个层面:基因损伤。很多因素会引起基因突变,基因突变就是一种损伤。随着年龄增长,这些损伤就会逐步累积和叠加。如果这种基因突变发生在关键位点上,就会变成癌症基因。 从这个角度看,癌症就是衰老的一种表现形式。 基因损伤的累积越来越多,就像染色体长满了伤疤一样,就会影响细胞的功能。 衰老的第二个层面:细胞功能异常。 无论是激素水平下降,利用营养物质的能力下降,还是清除衰老物质的能力下降,这些都是细胞功能下降的表现。 衰老的第三个层面:只有自我修复能力下降了,才是真的衰。 只有自我修复能力下降了,它没办法修复基因损伤,没办法恢复细胞功能的时候,才是真的衰了。 6、现代医学的进步让咱们有能力和很多慢性病对抗。在未来,医学可以帮助高龄的人解决很多躯体上的问题。但是,目前最难解决的问题,是衰老带来的认知能力下降。 7、延缓衰老:激发自我修复和代偿。 我们可以延缓因为年龄增大而引起的认知能力下降。 8、心理学家把人的智力分成晶体智力和流体智力。晶体智力是后天获得的认知能力。比如学会的某种技能、语言文字能力、判断力、联想力等等。晶体智力不会随着年龄下降。流体智力是一种先天的能力。比如记忆力、运算速度、推理能力等。这种智力是有生理基础的,所以,它在30岁以后会逐步下降。9、作者个人认为,既然流体智力有生理基础,那么咱们利用有效的方法延缓生理衰老,很可能有利于减慢流体智力的衰退速度。 10、重点: 衰老的本质不是年龄增长。 2 衰老的机理分为三个层面:基因损伤,细胞功能异常,自我修复能力下降。自我修复能力下降是衰老的本质。 . 运动、节食、戒烟限酒,有助于延缓衰老。 11、年龄可以反映衰老,但是却不能定义衰老。

相关百科
热门百科
首页
发表服务