论文发表百科

基于朴素贝叶斯的模型的论文研究

发布时间:2024-07-01 18:53:29

基于朴素贝叶斯的模型的论文研究

在介绍朴素贝叶斯算法之前,我们来看看关于统计学的一些基础知识: 贝叶斯定理需要先验知识作为支撑,而先验知识需要大量的计算和历史数据,因此在很长一段时间内,无法得到广泛应用。只有计算机诞生以后,它才获得真正的重视。人们发现,许多统计量是无法进行客观判断的,而互联网时代出现的大型数据集,再加上告诉运算能力,为验证这些统计量提供了方便,也为应用贝叶斯定理创造了条件。 条件概率:同理可得:即:全概率公式: 若事件  、  、…… 构成一个完备事件组即 ,且都有正概率,那么对于任意一个事件A,有如下公式贝叶斯公式: 贝叶斯公式与全概率公式相反,是在已知 的基础上,求  。 通过对条件概率的简单变形,就可以得到贝叶斯公式:贝叶斯公式由三部分形成,先验概率、后验概率、似然估计。其中后验概率 = 先验概率 * 似然估计。在上述公式中, 是先验概率, 是似然估计, 是后验概率。 所谓先验概率就是在事件A发生之前,我们对B事件概率的一个判断。后验概率则指的是在事件A发生之后,我们对B事件概率的重新评估。似然估计是一个调整因子或者修正参数,在我们计算事件概率的时候,需要不断通过修正参数使得我们所求的概率无限接近于真实概率。 如果似然估计   ,那么表示A事件的发生提高了B事件发生的概率。相反的,如果似然估计  ,那么表示A事件的发生降低了B事件发生的概率。 从统计学知识回到我们的数据分析。假如我们的分类模型样本是:即我们有m个样本,每个样本有n个特征,特征输出有K个标签,定义为 。从样本我们可以学习得到朴素贝叶斯的先验分布 ,条件概率分布 ,然后我们就可以用贝叶斯公式得到 :分析上面的式子,  =   即标签 在训练集中出现的频数。但是 是一个复杂的n个维度的条件分布,很难计算。所以为了简化计算,朴素贝叶斯模型中假设n个特征之间相互独立,于是有:最后回到我们要解决的问题,我们的问题是给定测试集的一个新样本特征 ,我们如何判断它属于哪个类型? 贝叶斯模型的目标是后验概率最大化来判断分类。我们只要计算出所有的K个条件概率 然后找出最大的条件概率对应的类别。 我们预测的类别 是使 最大的类别:分析上式可知分母 是固定值,因此预测公式可以简化为:接着我们利用朴素贝叶斯的独立性假设,就可以得到通常意义上的朴素贝叶斯推断公式:在朴素贝叶斯算法中,学习意味着估计 和 。可以用极大似然估计法估计相应的概率。先验概率 的极大似然估计是:其中 即样本中标签 出现的次数在总样本数 中的占比。 第 个特征 可能的取值集合为 ,似然函数 即 标签中,第 个特征 中各种取值的次数在 标签出现总次数中的占比。 在用极大似然估计时,可能特征 的某些取值在 标签样本中没有出现,这时似然函数为 ,同时导致目标函数为 ,这会使分类产生偏差。为解决这一问题采用贝叶斯估计:其中 是 标签中第 个特征不重复数值的个数。当 是就是极大似然估计,当 时,称为拉普拉斯平滑。同样,先验概率的贝叶斯估计是: 小伙伴们如果觉得文章还行的请点个赞呦!!同时觉得文章哪里有问题的可以评论一下  谢谢你!

关于贝叶斯的毕业论文

写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》

一、财务管理 本专业毕业生可选择的毕业论文范围包括基础会计学、财务管理学、中级财务会计、高级财务会计、跨国公司财务、财务分析、资产评估学、金融工程、投资银行学、财务工程学、财务分析与预算等课程所涉及的相关内容. 二、会计学 本专业毕业生可选择的毕业论文范围包括基础会计学中级财务会计、高级财务会计、成本会计、管理会计、金融会计、财务管理学、审计学、会计信息系统、会计制度设计、会计电算化等课程所涉及的相关内容. 三、会计学(国际会计方向) 本专业毕业生可选择的毕业论文范围包括基础会计学中级财务会计.高级财务会计、成本会计.管理会计、公司财务、会计理论.外汇业务会计.国际会计、国际金融、国际商法.会计英语等课程所涉及的相关内容. 四、会计学(注册会计师方向) 本专业毕业生可选择的毕业论文范围包括基础会计学、中级财务会计.高级财务会计、成本会计、管理会计审计学、财务管理学、会计英语.财务报表分析.外汇业务会计、股份公司会计、证券公司会计.国际会计、预算会计等课程所涉及的相关内容. 五、会计学(金融会计方向) 本专业毕业生可选择的毕业论文范围包括基础会计学、银行会计学、证券公司会计、保险会计、衍生金融工具会计.成本会计财务管理学、会计电算化、审计学、会计法.财务报表分析等课程所涉及的相关内容. 六、会计学(法务会计方向) 本专业毕业生可选择的毕业论文范围包括基础会计学、中级财务会计、高级财务会计、财务管理学、成本会计、审计学、审计技术方法、管理学、经济法、税法、民法、刑法等课程所涉及的相关内容. 七、会计电算化 本专业毕业生可选择的毕业论文范围包括基础会计学、高级财务会计、财务管理学、预算会计、成本会计、管理会计纳税会计、财务报表分析、审计学、电子商务管理实务、电算化会计与财会软件、会计实务模拟等课程所涉及的相关内容. 八、会计信息化 本专业毕业生可选择的毕业论文范围包括基础会计学、管理信息系统、中级财务会计、高级财务会计、财务管理学、成本会计、管理会计、审计学、统计学、会计信息化、会计软件开发技术、会计信息系统分析设计与开发等课程所涉及的相关内容. 九、审计学 本专业毕业生可选择的毕业论文范围包括货币银行学、中级财务会计、公共部门会计、财务管理学、审计学、网络审计、内部审计、国家审计、国际审计、资产评估学等课程所涉及的相关内容. 十、统计学 本专业毕业生可选择的毕业论文范围包括统计学、概率论、数理统计、多元统计时间序列统计调查、统计软件、抽样调查、计量经济学、国民经济统计与分析、数据分析案例实务、经济预测与决策、金融数学等课程所涉及的相关内容. 财务会计类毕业论文的参考题目 一、财务管理专业毕业论文参考题目 1.浅析企业现金流量财务预警系统的建立与完善 2.论企业财务增值型内部审计及其实现增值服务的路径 3.加速企业资金周转的途径与措施 4.企业财务危机预警模型构建 5.企业财务报销制度的思考 6.论应收账款的风险规避 7..上市公司财务报表舞弊行为研究 8.论企业财务内控制度体系的构建途径 9.浅论企业集团财务绩效考核指标体系 10.浅谈新准则下XX企业财务报告分析 二、会计学专业毕业论文参考题目 1.企业内部会计控制存在的问题与对策 2.浅谈所得税会计处理对企业的影响 3.绿色会计核算初探 4.上市公司会计信息披露规范化探讨 5.发展网络会计亟须解决的问题 6.论我国民营企业中存在的会计诚信问题及解决对策 7.企业财务风险的分析与防范 8.不同经济体制中的会计模式比较 9.中小型企业财务管理存在的问题及对策 10.财务预警系统初探 三、会计电算化专业毕业论文参考题目 1.会计电算化可能出现的问题及对策 2.会计电算化对会计工作方法的影响探讨 3.企业财务报表粉饰行为及其防范 4.浅谈企业会计电算化的风险与对策 5.会计电算化账务处理制度分析 6.会计核算电算化与会计管理电算化之比较 7.会计电算化犯罪的预防探讨 8.会计电算化报表系统的问题及对策分析 9.完善企业会计电算化系统内部控制浅析 10.会计电算化工作的质量控制研究 四、审计学专业毕业论文参考题目 1.关于经济责任审计风险的探讨 2.我国上市公司的会计造假现象及审计防范 3.论企业集团内部审计制度的构建 4.资产评估审计的理论与实务研究 5.经济责任审计的问题与对策探析 6.试论会计政策选择对会计信息的影响 7.中国审计市场集中度研究 8.影响企业审计质量的因素及其完善路径分析 9.试论高校内部审计风险及其防范 10.试论风险导向审计模式在我国会计师事务所的应用 五、统计学专业毕业论文参考题目 1. 基于多元统计方法的空气污染状况综合评价研究 2.统计方法在投资学中的应用. 3. 金融风险管理中的贝叶斯方法 4.统计数据质量评价及修正 5.低碳经济的标准与测度方法. 6.典型调查在新形势下的运用与发展 7.统计指数法在物价统计中的运用研究 8.长江水质的综合评价与预测. 9.我国股市收益率分布特征的统计分析 10.长三角区域创新能力评估指标体系与实证研究

我前几天刚刚答辩完毕,首先会给你几分钟自述,我准备的蛮多的 但是老师只叫我说下论文的结构和内容,只要把论文的东西说清楚就行。 问问题的话 老师分组都不一样 我们学院是一轮自述完毕再问问题 给你准备时间准备回答 所以问的比较专业吧 我的是针对论文中理论部分提出的 如果像是我们学校其他学院的答辩 是一个人自述接着问问题就回答的话 不给你准备时间 这样的话问题不会很难 起码不会很专业的 总体还是围绕论文展开 把论文前后都弄熟就行了 大概就是这样吧 我们答辩的时候也蛮紧张的 祝你好运咯~

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

关于贝叶斯方法的若干研究论文

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

网页链接

贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:1、已知类条件概率密度参数表达式和先验概率。2、利用贝叶斯公式转换成后验概率。3、根据后验概率大小进行决策分类。他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。公式:设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( )贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 信号估计中的贝叶斯方法及应用 贝叶斯神经网络在生物序列分析中的应用 基于贝叶斯网络的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的信息观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

原题:A Beginner's Guide to Variational Methods: Mean-Field Approximation 给初学者的变分法指导:平均场近似

这种 推断-优化 的二元性,赋予我们强大的能力。我们既可以使用最新、最好的优化算法来解决统计机器学习问题,也可以反过来,使用统计技术来最小化函数。

这篇文章是关于变分方法的入门教程。 我将推导出最简单的VB方法的优化目标,称为 平均场近似 。 这个目标,也称为 变分下界 ,与变分自动编码器( VAE )中使用的技术完全相同(我将在后续文章中相信介绍它,堪称入木三分)。

1.问题的前提和符号约定 2.问题的表述 3.平均场近似的变分下界 4.前传KL与反传KL 5.与深度学习的联系

本文假设读者熟悉随机变量、概率分布和数学期望等概念。如果你忘了这些概念,可以在 这里 进行复习。机器学习和统计领域的符号约定没有被严格地标准化,因此在这篇文章中,我们约定如下符号,确定的符号将对理解文意很有帮助:

许多学术论文将术语“变量”、“分布”、“密度”,甚至“模型”互换使用。这种做法本身不一定导致错误,因为 、 和 都可以通过一对一的对应关系相互指代。但是,将这些术语混合在一起,容易让人感到困惑。因为它们的指代范畴各不相同(比如对函数进行 抽样 没有意义,对分布 积分 同样没有意义)。

我们将系统建模为随机变量的集合,其中一些变量( )是“可观察的”,而其他变量( )是“隐藏的”。 【译者按:后文称二者为“观察变量”和“隐变量”】我们可以通过下图绘制这种关系:

从 到 ,通过条件分布 这条边,将两个变量联系在一起。

说一个更形象的例子: 可能代表“图像的原始像素值”,而 是二值变量。如果 是猫的图像, 。

贝叶斯定理 给出了任意一对随机变量之间的一般关系: 其中的各项与如下常见名称相关联:

是后验概率:“给定图像,这是猫的概率是多少?” 如果我们可以从 进行采样,我们可以用它作一个猫分类器,告诉我们给定的图像是否是猫。

是似然概率:“给定 的值,计算出该图像 在该类别下的‘可能’程度({是猫/不是猫})” 如果我们可以从 进行采样,那么我们就可以生成猫的图像和非猫的图像,就像生成随机数一样容易。如果你想了解更多相关信息,请参阅我的关于生成模型的其他文章: [1] , [2] 。

是先验概率。它指代我们所知道的关于 的任何先前信息——例如,如果我们认为所有图像中,有1/3是猫,那么 并且 。

这部分是为了感兴趣的读者准备的。请直接跳到下一部分,继续学习本教程。

前面猫的示例提供了观察变量、隐变量和先验的理解角度,是传统的一个示例。 但是请注意,我们定义隐变量/观察变量之间的区别有些随意,你可以自由地将图形模型按需求进行分解。

我们可以通过交换等式的项来重写贝叶斯定理: 现在的“后验概率”是 。

从贝叶斯统计框架,隐变量可以解释为附加到观察变量的 先验信念 。 例如,如果我们认为 是多元高斯,则隐变量 可以表示高斯分布的均值和方差。 另外,参数 上的分布是 的先验分布。

你也可以自由选择 和 代表的值。 例如, 可以代之以“均值、方差的立方根、以及 ,其中 ”。 虽然有点突兀、奇怪,但只要相应地修改 ,结构仍然有效。

你甚至可以往系统中“添加”变量。先验本身可能通过 依赖于其他随机变量, 具有它们自己的 的先验分布,并且那些先验仍然是有先验的,依此类推。任何超参数都可以被认为是先验的。 在贝叶斯统计中, 先验是无穷递归的 。【译者按:1.英文中俗语“turtles all the way down”表示问题无限循环、递归,作者用了"priors all the way down"来诙谐地表达先验系统的递归性。2.先验的层次越深,对结果的影响越 小 】

我们感兴趣的关键问题是隐变量 的后验推断或密度函数。后验推断的一些典型例子:

我们通常假设,我们已知如何计算似然分布 和先验分布 【译者按:原文为“function”函数,应为讹误,后文类似情况以符号为准】。

然而,对于像上面的复杂任务,我们常常不知道如何从 采样或计算 。或者,我们可能知道 的形式,但相应的计算十分复杂,以至于我们无法在合理的时间内对其评估【译者按:“评估”的意思是给定似然函数,求出该函数在某一点上的值】。 我们可以尝试使用像 MCMC 这样的基于采样的方法求解,但这类方法很难收敛。

变分推断背后的想法是这样的:对简单的参数分布 (就像高斯分布)进行推断。对这个函数,我们已经知道如何做后验推断,于是任务变成了调整参数 使得 尽可能接近 。【译者按:“推断”在这里指的是从观察变量 的概率分布导出隐变量 的概率分布】

这在视觉上如下图所示:蓝色曲线是真实的后验分布,绿色分布是通过优化得到的拟合蓝色密度的变分近似(高斯分布)。

两个分布“接近”意味着什么? 平均场变分贝叶斯(最常见的类型)使用反向KL散度作为两个分布之间的距离度量。

反向KL散度测量出将 “扭曲(distort)”成 所需的信息量(以nat为单位或以2为底的对数bits为单位)。我们希望最小化这个量。【译者按:1.“扭曲”的意思是,把 和 贴合在一起,即通过某种映射引发函数图像的形变,使二者图像一致;2.许多研究产生式模型的论文会比较不同方法下的散度值。】

根据条件分布的定义, 。 让我们将这个表达式代入原来的KL表达式,然后使用分配律: 为了使 相对于变分参数 最小化,我们只需要最小化 ,因为 对于 来说是常数。 让我们重新写这个数量作为对分布 的期望。 最小化上面的式子等价于最大化负的式子: 在文献中, 被称为 变分下界 。如果我们能够估计 、 、 ,我们就可以计算它。我们可以继续调整式子里各项的顺序,使之更符合直觉: 如果说采样 是将观察变量 “编码”为隐变量 的过程,则采样 是从 重建观察变量 的“解码”过程。

由此得出 是预期的“解码”似然(即变分分布 能在多大程度上将样本 解码回样本 ),再减去变分近似的分布与先验 之间的KL散度【译者按:原文是“加上”,应该是减去】。如果我们假设 是条件高斯的,那么先验 通常被指定为平均值0、标准偏差1的对角高斯分布。

为什么 称为变分下界? 将 代入 ,我们有: 的含义,用大白话说就是,真实分布下的数据点 的对数似然 ,等于 ,加上 用来捕获在该特定值 处 和 之间距离的差。

由于 , 必大于(或等于) 。因此 是 的下界。 也被称为证据下界(ELBO),通过调整公式:

注意, 本身包含近似后验和先验之间的KL散度,因此 中总共有两个KL项。

KL散度函数不是对称距离函数,即 (当 时除外)第一个被称为“前向KL”,而后者是“反向KL””。 我们为什么要使用反向KL呢?因为推导的目标要求我们近似 ,所以【在 和 不能同时得到最优形式的情况下】我们要优先确保 的形式准确。

我很喜欢Kevin Murphy在 PML教科书 中的解释,我在这里尝试重新说明一下:

让我们首先考虑正向KL。正如上述推导,我们可以将KL写为,权重函数 加权下,“惩罚”函数 的期望。 只要 ,惩罚函数在任何地方都会给总KL带来损失。对于 , 。 这意味着前向KL将在 未能“掩盖” 时,将会很大。

因此,当我们确保前向KL最小化时 时, 。 优化的变分分布 被称为“避免零(zero-avoiding)”(密度 为零时 避免为零)。

如果 ,我们必须确保分母 的地方,加权功能的 ,否则KL会爆炸。这被称为“必设零(zero-forcing)”:

在机器学习问题中,使用平均场近似时,留意反向KL的后果很重要。 如果我们将单峰分布拟合到多模态分布,我们最终会得到更多的假阴性的样例(也就是说, 实际上存在概率,但我们依据 认为没有可能性)。

变分法对于深度学习非常重要。 我将在后面再写文章详细说明。这是“太长不看版”:

结合深度学习和变分贝叶斯方法,我们可以对 极其 复杂的后验分布进行推断。 事实证明,像变分自动编码器这样的现代技术,可以优化得到上文中形式完全相同的平均场变分下界!

感谢阅读,敬请期待!

鉴于标题,我们值得给出“平均场近似”这个名字背后的一些动机。

从统计物理学的观点来看,“平均场”是指忽略二阶效应,将困难的优化问题放松到更简单的问题。例如,在图模型的情境中,我们可以把估计 马尔可夫随机场 的配分函数(partition function)问题,转为最大化吉布斯自由能(对数配分函数减去相对熵)的问题。这显著地简化了全概率测量空间的全局优化的形式(参见M. Mezard和A. Montanari,Sect )。

整体分解: 平均场近似的分解:

从算法的观点来看,“平均场”是指用于计算马尔可夫随机场边缘概率的朴素平均场算法(naive mean field algorithm)。回想一下,朴素平均场算法的固定点【即最终解】是吉布斯变分问题的平均场近似的最优点。这种方法是“均值”,因为它是吉布斯采样器的平均/期望/ LLN版本,因此忽略了二阶(随机)效应(参见,和M. Jordan,()和())。

【译者按: 1.上述说明主要针对配分函数而言的。 的隐空间为标准高斯分布,协方差矩阵为对角单位阵,而不考虑非对角元素的影响。这体现了“平均场”的思想。 的实验效果显示,产生图像较为模糊或“平均”,不够锐利,也许正是平均场近似的结果】

关于贝叶斯论文范文写作

之前看过一些贝叶斯的论文后,发现很多细节不理解,对贝叶斯在各个领域的应用也不清楚,便想着找本偏科普的书来看看,于是开始阅读贝叶斯思维(Think Bayes)这本书。很薄的一本。 贝叶斯的基本理论都是源于条件概率模型,作者用一个很有意思的例子来解释了条件概率。注意:不是抓球那种老掉牙的例子。 作者希望知道自己得FCA的概率(某种心脏病,具体病名叫First Coronary Attack),根据已有的统计报告,美国每年大概有785000人次患FCA。因为美国的人口是亿,因此可以得出一个美国人患上FCA的概率是。但作者觉得这种算法不够准确,因为他并不是一个随机抽取的美国人,平均值并不能代表他的值,某个具体人患上FCA的概率需要考虑很多其他因素,例如年龄,性别等。 作者男性,45岁,这些因素增加了他患FCA的概率;而他是低血压却减低了他患FCA的概率。综合这些因素,作者算出他下年患上FCA的概率是,低于平均值。而这种考虑多种因素后算出的概率被称为条件概率。而条件概率的定义就是大家所熟知的p(A|B):B发生的时候,发生A的概率。结合作者的例子来解释就是:A代表作者患上FCA的概率,B是作者列出的影响因素的集合(年龄,性别,血压等)。 联合概率用来描述两个事件A和B同时发生的概率,记做p(A and B)=p(A)p(B)。用抛硬币来举例,第一次抛硬币正面朝上的概率记做p(A),第二次抛硬币正面朝上的概率记做p(B),那么两次都朝上的概率是p(A)p(B)=。需要注意的是,p(A and B)=p(A)p(B)并不是什么时候都成立,要求事件A和B要彼此独立,也就是p(B|A)=p(B),直白点的解释就是B发生的概率与A发生与否没有关系。抛硬币的事件就满足这个条件。 再举一个事件不相互独立的例子。假设A代表今天下雨,B代表明天下雨。通常,如果今天下雨,明天下雨的概率会比较大,因此可以得出p(B|A)>p(B)。因此呢,p(A and B)写成p(A)p(B|A)会比较准确。 综上所述,联合概率的公式可以写成:p(A and B)=p(A)p(B|A)

贝叶斯定理太有用了,不管是在投资领域,还是机器学习,或是日常生活中高手几乎都在用到它。 生命科学家用贝叶斯定理研究基因是如何被控制的;教育学家突然意识到,学生的学习过程其实就是贝叶斯法则的运用;基金经理用贝叶斯法则找到投资策 略;Google用贝叶斯定理改进搜索功能,帮助用户过滤垃圾邮件;无人驾驶汽车接收车顶传感器收集到的路况和交通数据,运用贝叶斯定理更新从地图上获得 的信息;人工智能、机器翻译中大量用到贝叶斯定理。 我将从以下4个角度来科普贝叶斯定理及其背后的思维: 1.贝叶斯定理有什么用? 2.什么是贝叶斯定理? 3.贝叶斯定理的应用案例 4.生活中的贝叶斯思维 1.贝叶斯定理有什么用? 英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。而这篇论文是在他死后才由他的一位朋友发表出来的。 (ps:贝叶斯定理其实就是下面图片中的概率公式,这里先不讲这个公式,而是重点关注它的使用价值,因为只有理解了它的使用意义,你才会更有兴趣去学习它。) 在这篇论文中,他为了解决一个“逆概率”问题,而提出了贝叶斯定理。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,比如杜蕾斯举办了一个抽奖,抽奖桶里有10个球,其中2个白球,8个黑球,抽到白球就算你中奖。你伸手进去随便摸出1颗球,摸出中奖球的概率是多大。 根据频率概率的计算公式,你可以轻松的知道中奖的概率是2/10 如果还不懂怎么算出来的,可以看我之前写的科普概率的回答: 猴子:如何理解条件概率? 而贝叶斯在他的文章中是为了解决一个“逆概率”的问题。比如上面的例子我们并不知道抽奖桶里有什么,而是摸出一个球,通过观察这个球的颜色,来预测这个桶里里白色球和黑色球的比例。 这个预测其实就可以用贝叶斯定理来做。贝叶斯当时的论文只是对“逆概率”这个问题的一个直接的求解尝试,这哥们当时并不清楚这里面这里面包含着的深刻思想。 然而后来,贝叶斯定理席卷了概率论,并将应用延伸到各个问题领域。可以说,所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。 为什么贝叶斯定理在现实生活中这么有用呢? 这是因为现实生活中的问题,大部分都是像上面的“逆概率”问题。生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。 比如天气预报说,明天降雨的概率是30%,这是什么意思呢? 我们无法像计算频率概率那样,重复地把明天过上100次,然后计算出大约有30次会下雨。 而是只能利用有限的信息(过去天气的测量数据),用贝叶斯定理来预测出明天下雨的概率是多少。 同样的,在现实世界中,我们每个人都需要预测。想要深入分析未来、思考是否买股票、政策给自己带来哪些机遇、提出新产品构想,或者只是计划一周的饭菜。 贝叶斯定理就是为了解决这些问题而诞生的,它可以根据过去的数据来预测出概率。 贝叶斯定理的思考方式为我们提供了明显有效的方法来帮助我们提供能力,以便更好地预测未来的商业、金融、以及日常生活。 总结下第1部分:贝叶斯定理有什么用? 在有限的信息下,能够帮助我们预测出概率。 所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。例如垃圾邮件过滤,中文分词,艾滋病检查,肝癌检查等。 2.什么是贝叶斯定理? 贝叶斯定理长这样: 到这来,你可能会说:猴子,说人话,我一看到公式就头大啊。 其实,我和你一样,不喜欢公式。我们还是从一个例子开始聊起。 我的朋友小鹿说,他的女神每次看到他的时候都冲他笑,他想知道女神是不是喜欢他呢? 谁让我学过统计概率知识呢,下面我们一起用贝叶斯帮小鹿预测下女神喜欢他的概率有多大,这样小鹿就可以根据概率的大小来决定是否要表白女神。 首先,我分析了给定的已知信息和未知信息: 1)要求解的问题:女神喜欢你,记为A事件 2)已知条件:女神经常冲你笑,记为B事件 所以说,P(A|B)是女神经常冲你笑这个事件(B)发生后,女神喜欢你(A)的概率。 从公式来看,我们需要知道这么3个事情: 1)先验概率 我 们把P(A)称为'先验概率'(Prior probability),即在不知道B事件的前提下,我们对A事件概率的一个主观判断。这个例子里就是在不知道女神经常对你笑的前提下,来主观判断出女 神喜欢一个人的概率,这里我们假设是50%,也就是不能喜欢你,可能不喜欢还你的概率都是一半。 2)可能性函数 P(B|A)/P(B)称为'可能性函数'(Likelyhood),这是一个调整因子,即新信息B带来的调整,作用是使得先验概率更接近真实概率。 可 能性函数你可以理解为新信息过来后,对先验概率的一个调整。比如我们刚开始看到“人工智能”这个信息,你有自己的理解(先验概率/主观判断),但是当你学 习了一些数据分析,或者看了些这方面的书后(新的信息),然后你根据掌握的最新信息优化了自己之前的理解(可能性函数/调整因子),最后重新理解了“人工 智能”这个信息(后验概率) 如果'可能性函数'P(B|A)/P(B)>1,意味着'先验概率'被增强,事件A的发生的可能性变大; 如果'可能性函数'=1,意味着B事件无助于判断事件A的可能性; 如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小 还是刚才的例子,根据女神经常冲你笑这个新的信息,我调查走访了女神的闺蜜,最后发现女神平日比较高冷,很少对人笑。所以我估计出'可能性函数'P(B|A)/P(B)=(具体如何估计,省去1万字,后面会有更详细科学的例子) 3)后验概率 P(A|B)称为'后验概率'(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。这个例子里就是在女神冲你笑后,对女神喜欢你的概率重新预测。 带入贝叶斯公式计算出P(A|B)=P(A)* P(B|A)/P(B)=50% * 因此,女神经常冲你笑,喜欢上你的概率是75%。这说明,女神经常冲你笑这个新信息的推断能力很强,将50%的'先验概率'一下子提高到了75%的'后验概率'。 在得到预测概率后,小鹿自信满满的发了下面的表白微博:无图 稍后,果然收到了女神的回复。预测成功。无图 现在我们再看一遍贝叶斯公式,你现在就能明白这个公式背后的最关键思想了: 我们先根据以往的经验预估一个'先验概率'P(A),然后加入新的信息(实验结果B),这样有了新的信息后,我们对事件A的预测就更加准确。 因此,贝叶斯定理可以理解成下面的式子: 后验概率(新信息出现后的A概率)=先验概率(A概率) x 可能性函数(新信息带来的调整) 贝叶斯的底层思想就是: 如果我能掌握一个事情的全部信息,我当然能计算出一个客观概率(古典概率)。 可是生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。也就是,在主观判断的基础上,你可以先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数)。 如果用图形表示就是这样的: 其实阿尔法狗也是这么战胜人类的,简单来说,阿尔法狗会在下每一步棋的时候,都可以计算自己赢棋的最大概率,就是说在每走一步之后,他都可以完全客观冷静的更新自己的信念值,完全不受其他环境影响。 3.贝叶斯定理的应用案例 前面我们介绍了贝叶斯定理公式,及其背后的思想。现在我们来举个应用案例,你会更加熟悉这个牛瓣的工具。 为了后面的案例计算,我们需要先补充下面这个知识。 1.全概率公式 这个公式的作用是计算贝叶斯定理中的P(B)。 假定样本空间S,由两个事件A与A'组成的和。例如下图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。 这时候来了个事件B,如下图: 全概率公式: 它的含义是,如果A和A'构成一个问题的全部(全部的样本空间),那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。 看到这么复杂的公式,记不住没关系,因为我也记不住,下面用的时候翻到这里来看下就可以了。 案例1:贝叶斯定理在做判断上的应用 有两个一模一样的碗,1号碗里有30个巧克力和10个水果糖,2号碗里有20个巧克力和20个水果糖。 然后把碗盖住。随机选择一个碗,从里面摸出一个巧克力。 问题:这颗巧克力来自1号碗的概率是多少? 好了,下面我就用套路来解决这个问题,到最后我会给出这个套路。 第1步,分解问题 1)要求解的问题:取出的巧克力,来自1号碗的概率是多少? 来自1号碗记为事件A1,来自2号碗记为事件A2 取出的是巧克力,记为事件B, 那么要求的问题就是P(A1|B),即取出的是巧克力,来自1号碗的概率 2)已知信息: 1号碗里有30个巧克力和10个水果糖 2号碗里有20个巧克力和20个水果糖 取出的是巧克力 第2步,应用贝叶斯定理 1)求先验概率 由于两个碗是一样的,所以在得到新信息(取出是巧克力之前),这两个碗被选中的概率相同,因此P(A1)=P(A2)=,(其中A1表示来自1号碗,A2表示来自2号碗) 这个概率就是'先验概率',即没有做实验之前,来自一号碗、二号碗的概率都是。 2)求可能性函数 P(B|A1)/P(B) 其中,P(B|A1)表示从一号碗中(A1)取出巧克力(B)的概率。 因为1号碗里有30个水果糖和10个巧克力,所以P(B|A1)=30/(30+10)=75% 现在只有求出P(B)就可以得到答案。根据全概率公式,可以求得P(B)如下图: 图中P(B|A1)是1号碗中巧克力的概率,我们根据前面的已知条件,很容易求出。 同样的,P(B|A2)是2号碗中巧克力的概率,也很容易求出(图中已给出)。 而P(A1)=P(A2)= 将这些数值带入公式中就是小学生也可以算出来的事情了。最后P(B)= 所以,可能性函数P(A1|B)/P(B)=75%/ 可能性函数>1.表示新信息B对事情A1的可能性增强了。 3)带入贝叶斯公式求后验概率 将上述计算结果,带入贝叶斯定理,即可算出P(A1|B)=60% 这个例子中我们需要关注的是约束条件:抓出的是巧克力。如果没有这个约束条件在,来自一号碗这件事的概率就是50%了,因为巧克力的分布不均把概率从50%提升到60%。 现在,我总结下刚才的贝叶斯定理应用的套路,你就更清楚了,会发现像小学生做应用题一样简单: 第1步. 分解问题 简单来说就像做应用题的感觉,先列出解决这个问题所需要的一些条件,然后记清楚哪些是已知的,哪些是未知的。 1)要求解的问题是什么? 识别出哪个是贝叶斯中的事件A(一般是想要知道的问题),哪个是事件B(一般是新的信息,或者实验结果) 2)已知条件是什么? 第2步.应用贝叶斯定理 第3步,求贝叶斯公式中的2个指标 1)求先验概率 2)求可能性函数 3)带入贝叶斯公式求后验概率

贝叶斯推理研究综述_思想政治教育

基于遥感的叶绿素的提取研究论文

森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048) Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。 2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想: 遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079) 摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全

叶绿体色素的提取 实验原理 植物叶绿体色素是吸收太阳光能,进行光合作用的重要物质。它一般由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。这些色素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。实验材料 卤地菊叶片 器材:研钵、剪刀实验步骤(1)取植物新鲜叶片1克,洗净,擦干,去掉中脉剪碎,放人研钵中。 (2)研钵中加入少量石英砂及碳酸钙粉,2-3 mL95%乙醇,研磨至糊状,再加2-3 mL95%乙醇,过滤,即得色素提取液。

森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China. Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion. The complete steps of image processing for forest inventory are words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角 ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 3. 结果和讨论 几何精度 利用SPOT5物理模型,采用1:1万地形图和万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等.《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4. 2.赵英时.《遥感应用分析原理与方法》,科学出版社,北京, 3.北京视宝卫星图像有限公司.《专业制图工作室GEOIMAGE用户指南》,2004,68-70. 4.Christine Pohl. Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208; 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全、保密及技术服务标准以及元数据标准等;(3)地球空间信息的时空变化理论,包括时空变化发现的方法和对时空变化特征的和规律的研究;(4)地球空间信息的认知,主要通过各目标各要素的位置、结构形态、相互关联等从静态上的形态分析、发生上的成因分析、动态上的过程分析、演化上的力学分析以及时态上的演化分析达到对地球空间的客观认知;(5)地球空间信息的不确定性,包括类型的不确定性、空间位置的不确定性、空间关系的不确定性、逻辑的不一致性和信息的不完备性;(6)地球空间信息的解译与反演,包括定性解译和定量反演,贯穿在信息获取、信息处理和认知过程中;(7)地球空间信息的表达与可视化,涉及到空间数据库多分辨率表示、数字地图自动综合、图形可视化、动态仿真和虚拟现实等。目前,这些方面的研究对建立完备的理论尚嫌不足,需要在今后加强这方面的基础研究。 关于遥感与GIS的集成,涉及到GPS和通信技术的集成,本文未作具体讨论,其具体内容可参见文献[4—6]。 3 结语 遥感与GIS在20世纪出现,在21世纪不仅将形成自身的理论体系和技术体系,而且将形成天地一体化的空间信息服务产业,为国民经济建设、国家安全、社会可持续发展和提高人民生活质量做出愈来愈大的贡献。 参考文献: [1] Li D R, Sui H G. Automatic Change Detection of Geospatial Data from Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002,34(II):245—251 [2] 龚健雅. 地理信息系统基础. 北京:科学出版社,2001 [3] 邸凯昌. 空间数据发掘与知识发现(第一版). 武汉:武汉大学出版社,2000. 182 [4] 李德仁,关泽群. 空间信息系统的集成与实现(第一版). 武汉:武汉测绘科技大学出版社,2000. 244 [5] 李德仁,李清泉. 论地球空间信息技术与通信技术的集成. 武汉大学学报(信息科学版),2001,26(1):1—7 [6] 李德

自己进百度去查啊!!!!~~~~~~

相关百科
热门百科
首页
发表服务