论文发表百科

关于贝叶斯方法的若干研究论文

发布时间:2024-07-01 09:49:05

关于贝叶斯方法的若干研究论文

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

网页链接

贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:1、已知类条件概率密度参数表达式和先验概率。2、利用贝叶斯公式转换成后验概率。3、根据后验概率大小进行决策分类。他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。公式:设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( )贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 信号估计中的贝叶斯方法及应用 贝叶斯神经网络在生物序列分析中的应用 基于贝叶斯网络的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的信息观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

原题:A Beginner's Guide to Variational Methods: Mean-Field Approximation 给初学者的变分法指导:平均场近似

这种 推断-优化 的二元性,赋予我们强大的能力。我们既可以使用最新、最好的优化算法来解决统计机器学习问题,也可以反过来,使用统计技术来最小化函数。

这篇文章是关于变分方法的入门教程。 我将推导出最简单的VB方法的优化目标,称为 平均场近似 。 这个目标,也称为 变分下界 ,与变分自动编码器( VAE )中使用的技术完全相同(我将在后续文章中相信介绍它,堪称入木三分)。

1.问题的前提和符号约定 2.问题的表述 3.平均场近似的变分下界 4.前传KL与反传KL 5.与深度学习的联系

本文假设读者熟悉随机变量、概率分布和数学期望等概念。如果你忘了这些概念,可以在 这里 进行复习。机器学习和统计领域的符号约定没有被严格地标准化,因此在这篇文章中,我们约定如下符号,确定的符号将对理解文意很有帮助:

许多学术论文将术语“变量”、“分布”、“密度”,甚至“模型”互换使用。这种做法本身不一定导致错误,因为 、 和 都可以通过一对一的对应关系相互指代。但是,将这些术语混合在一起,容易让人感到困惑。因为它们的指代范畴各不相同(比如对函数进行 抽样 没有意义,对分布 积分 同样没有意义)。

我们将系统建模为随机变量的集合,其中一些变量( )是“可观察的”,而其他变量( )是“隐藏的”。 【译者按:后文称二者为“观察变量”和“隐变量”】我们可以通过下图绘制这种关系:

从 到 ,通过条件分布 这条边,将两个变量联系在一起。

说一个更形象的例子: 可能代表“图像的原始像素值”,而 是二值变量。如果 是猫的图像, 。

贝叶斯定理 给出了任意一对随机变量之间的一般关系: 其中的各项与如下常见名称相关联:

是后验概率:“给定图像,这是猫的概率是多少?” 如果我们可以从 进行采样,我们可以用它作一个猫分类器,告诉我们给定的图像是否是猫。

是似然概率:“给定 的值,计算出该图像 在该类别下的‘可能’程度({是猫/不是猫})” 如果我们可以从 进行采样,那么我们就可以生成猫的图像和非猫的图像,就像生成随机数一样容易。如果你想了解更多相关信息,请参阅我的关于生成模型的其他文章: [1] , [2] 。

是先验概率。它指代我们所知道的关于 的任何先前信息——例如,如果我们认为所有图像中,有1/3是猫,那么 并且 。

这部分是为了感兴趣的读者准备的。请直接跳到下一部分,继续学习本教程。

前面猫的示例提供了观察变量、隐变量和先验的理解角度,是传统的一个示例。 但是请注意,我们定义隐变量/观察变量之间的区别有些随意,你可以自由地将图形模型按需求进行分解。

我们可以通过交换等式的项来重写贝叶斯定理: 现在的“后验概率”是 。

从贝叶斯统计框架,隐变量可以解释为附加到观察变量的 先验信念 。 例如,如果我们认为 是多元高斯,则隐变量 可以表示高斯分布的均值和方差。 另外,参数 上的分布是 的先验分布。

你也可以自由选择 和 代表的值。 例如, 可以代之以“均值、方差的立方根、以及 ,其中 ”。 虽然有点突兀、奇怪,但只要相应地修改 ,结构仍然有效。

你甚至可以往系统中“添加”变量。先验本身可能通过 依赖于其他随机变量, 具有它们自己的 的先验分布,并且那些先验仍然是有先验的,依此类推。任何超参数都可以被认为是先验的。 在贝叶斯统计中, 先验是无穷递归的 。【译者按:1.英文中俗语“turtles all the way down”表示问题无限循环、递归,作者用了"priors all the way down"来诙谐地表达先验系统的递归性。2.先验的层次越深,对结果的影响越 小 】

我们感兴趣的关键问题是隐变量 的后验推断或密度函数。后验推断的一些典型例子:

我们通常假设,我们已知如何计算似然分布 和先验分布 【译者按:原文为“function”函数,应为讹误,后文类似情况以符号为准】。

然而,对于像上面的复杂任务,我们常常不知道如何从 采样或计算 。或者,我们可能知道 的形式,但相应的计算十分复杂,以至于我们无法在合理的时间内对其评估【译者按:“评估”的意思是给定似然函数,求出该函数在某一点上的值】。 我们可以尝试使用像 MCMC 这样的基于采样的方法求解,但这类方法很难收敛。

变分推断背后的想法是这样的:对简单的参数分布 (就像高斯分布)进行推断。对这个函数,我们已经知道如何做后验推断,于是任务变成了调整参数 使得 尽可能接近 。【译者按:“推断”在这里指的是从观察变量 的概率分布导出隐变量 的概率分布】

这在视觉上如下图所示:蓝色曲线是真实的后验分布,绿色分布是通过优化得到的拟合蓝色密度的变分近似(高斯分布)。

两个分布“接近”意味着什么? 平均场变分贝叶斯(最常见的类型)使用反向KL散度作为两个分布之间的距离度量。

反向KL散度测量出将 “扭曲(distort)”成 所需的信息量(以nat为单位或以2为底的对数bits为单位)。我们希望最小化这个量。【译者按:1.“扭曲”的意思是,把 和 贴合在一起,即通过某种映射引发函数图像的形变,使二者图像一致;2.许多研究产生式模型的论文会比较不同方法下的散度值。】

根据条件分布的定义, 。 让我们将这个表达式代入原来的KL表达式,然后使用分配律: 为了使 相对于变分参数 最小化,我们只需要最小化 ,因为 对于 来说是常数。 让我们重新写这个数量作为对分布 的期望。 最小化上面的式子等价于最大化负的式子: 在文献中, 被称为 变分下界 。如果我们能够估计 、 、 ,我们就可以计算它。我们可以继续调整式子里各项的顺序,使之更符合直觉: 如果说采样 是将观察变量 “编码”为隐变量 的过程,则采样 是从 重建观察变量 的“解码”过程。

由此得出 是预期的“解码”似然(即变分分布 能在多大程度上将样本 解码回样本 ),再减去变分近似的分布与先验 之间的KL散度【译者按:原文是“加上”,应该是减去】。如果我们假设 是条件高斯的,那么先验 通常被指定为平均值0、标准偏差1的对角高斯分布。

为什么 称为变分下界? 将 代入 ,我们有: 的含义,用大白话说就是,真实分布下的数据点 的对数似然 ,等于 ,加上 用来捕获在该特定值 处 和 之间距离的差。

由于 , 必大于(或等于) 。因此 是 的下界。 也被称为证据下界(ELBO),通过调整公式:

注意, 本身包含近似后验和先验之间的KL散度,因此 中总共有两个KL项。

KL散度函数不是对称距离函数,即 (当 时除外)第一个被称为“前向KL”,而后者是“反向KL””。 我们为什么要使用反向KL呢?因为推导的目标要求我们近似 ,所以【在 和 不能同时得到最优形式的情况下】我们要优先确保 的形式准确。

我很喜欢Kevin Murphy在 PML教科书 中的解释,我在这里尝试重新说明一下:

让我们首先考虑正向KL。正如上述推导,我们可以将KL写为,权重函数 加权下,“惩罚”函数 的期望。 只要 ,惩罚函数在任何地方都会给总KL带来损失。对于 , 。 这意味着前向KL将在 未能“掩盖” 时,将会很大。

因此,当我们确保前向KL最小化时 时, 。 优化的变分分布 被称为“避免零(zero-avoiding)”(密度 为零时 避免为零)。

如果 ,我们必须确保分母 的地方,加权功能的 ,否则KL会爆炸。这被称为“必设零(zero-forcing)”:

在机器学习问题中,使用平均场近似时,留意反向KL的后果很重要。 如果我们将单峰分布拟合到多模态分布,我们最终会得到更多的假阴性的样例(也就是说, 实际上存在概率,但我们依据 认为没有可能性)。

变分法对于深度学习非常重要。 我将在后面再写文章详细说明。这是“太长不看版”:

结合深度学习和变分贝叶斯方法,我们可以对 极其 复杂的后验分布进行推断。 事实证明,像变分自动编码器这样的现代技术,可以优化得到上文中形式完全相同的平均场变分下界!

感谢阅读,敬请期待!

鉴于标题,我们值得给出“平均场近似”这个名字背后的一些动机。

从统计物理学的观点来看,“平均场”是指忽略二阶效应,将困难的优化问题放松到更简单的问题。例如,在图模型的情境中,我们可以把估计 马尔可夫随机场 的配分函数(partition function)问题,转为最大化吉布斯自由能(对数配分函数减去相对熵)的问题。这显著地简化了全概率测量空间的全局优化的形式(参见M. Mezard和A. Montanari,Sect )。

整体分解: 平均场近似的分解:

从算法的观点来看,“平均场”是指用于计算马尔可夫随机场边缘概率的朴素平均场算法(naive mean field algorithm)。回想一下,朴素平均场算法的固定点【即最终解】是吉布斯变分问题的平均场近似的最优点。这种方法是“均值”,因为它是吉布斯采样器的平均/期望/ LLN版本,因此忽略了二阶(随机)效应(参见,和M. Jordan,()和())。

【译者按: 1.上述说明主要针对配分函数而言的。 的隐空间为标准高斯分布,协方差矩阵为对角单位阵,而不考虑非对角元素的影响。这体现了“平均场”的思想。 的实验效果显示,产生图像较为模糊或“平均”,不够锐利,也许正是平均场近似的结果】

关于贝叶斯的毕业论文

写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》

一、财务管理 本专业毕业生可选择的毕业论文范围包括基础会计学、财务管理学、中级财务会计、高级财务会计、跨国公司财务、财务分析、资产评估学、金融工程、投资银行学、财务工程学、财务分析与预算等课程所涉及的相关内容. 二、会计学 本专业毕业生可选择的毕业论文范围包括基础会计学中级财务会计、高级财务会计、成本会计、管理会计、金融会计、财务管理学、审计学、会计信息系统、会计制度设计、会计电算化等课程所涉及的相关内容. 三、会计学(国际会计方向) 本专业毕业生可选择的毕业论文范围包括基础会计学中级财务会计.高级财务会计、成本会计.管理会计、公司财务、会计理论.外汇业务会计.国际会计、国际金融、国际商法.会计英语等课程所涉及的相关内容. 四、会计学(注册会计师方向) 本专业毕业生可选择的毕业论文范围包括基础会计学、中级财务会计.高级财务会计、成本会计、管理会计审计学、财务管理学、会计英语.财务报表分析.外汇业务会计、股份公司会计、证券公司会计.国际会计、预算会计等课程所涉及的相关内容. 五、会计学(金融会计方向) 本专业毕业生可选择的毕业论文范围包括基础会计学、银行会计学、证券公司会计、保险会计、衍生金融工具会计.成本会计财务管理学、会计电算化、审计学、会计法.财务报表分析等课程所涉及的相关内容. 六、会计学(法务会计方向) 本专业毕业生可选择的毕业论文范围包括基础会计学、中级财务会计、高级财务会计、财务管理学、成本会计、审计学、审计技术方法、管理学、经济法、税法、民法、刑法等课程所涉及的相关内容. 七、会计电算化 本专业毕业生可选择的毕业论文范围包括基础会计学、高级财务会计、财务管理学、预算会计、成本会计、管理会计纳税会计、财务报表分析、审计学、电子商务管理实务、电算化会计与财会软件、会计实务模拟等课程所涉及的相关内容. 八、会计信息化 本专业毕业生可选择的毕业论文范围包括基础会计学、管理信息系统、中级财务会计、高级财务会计、财务管理学、成本会计、管理会计、审计学、统计学、会计信息化、会计软件开发技术、会计信息系统分析设计与开发等课程所涉及的相关内容. 九、审计学 本专业毕业生可选择的毕业论文范围包括货币银行学、中级财务会计、公共部门会计、财务管理学、审计学、网络审计、内部审计、国家审计、国际审计、资产评估学等课程所涉及的相关内容. 十、统计学 本专业毕业生可选择的毕业论文范围包括统计学、概率论、数理统计、多元统计时间序列统计调查、统计软件、抽样调查、计量经济学、国民经济统计与分析、数据分析案例实务、经济预测与决策、金融数学等课程所涉及的相关内容. 财务会计类毕业论文的参考题目 一、财务管理专业毕业论文参考题目 1.浅析企业现金流量财务预警系统的建立与完善 2.论企业财务增值型内部审计及其实现增值服务的路径 3.加速企业资金周转的途径与措施 4.企业财务危机预警模型构建 5.企业财务报销制度的思考 6.论应收账款的风险规避 7..上市公司财务报表舞弊行为研究 8.论企业财务内控制度体系的构建途径 9.浅论企业集团财务绩效考核指标体系 10.浅谈新准则下XX企业财务报告分析 二、会计学专业毕业论文参考题目 1.企业内部会计控制存在的问题与对策 2.浅谈所得税会计处理对企业的影响 3.绿色会计核算初探 4.上市公司会计信息披露规范化探讨 5.发展网络会计亟须解决的问题 6.论我国民营企业中存在的会计诚信问题及解决对策 7.企业财务风险的分析与防范 8.不同经济体制中的会计模式比较 9.中小型企业财务管理存在的问题及对策 10.财务预警系统初探 三、会计电算化专业毕业论文参考题目 1.会计电算化可能出现的问题及对策 2.会计电算化对会计工作方法的影响探讨 3.企业财务报表粉饰行为及其防范 4.浅谈企业会计电算化的风险与对策 5.会计电算化账务处理制度分析 6.会计核算电算化与会计管理电算化之比较 7.会计电算化犯罪的预防探讨 8.会计电算化报表系统的问题及对策分析 9.完善企业会计电算化系统内部控制浅析 10.会计电算化工作的质量控制研究 四、审计学专业毕业论文参考题目 1.关于经济责任审计风险的探讨 2.我国上市公司的会计造假现象及审计防范 3.论企业集团内部审计制度的构建 4.资产评估审计的理论与实务研究 5.经济责任审计的问题与对策探析 6.试论会计政策选择对会计信息的影响 7.中国审计市场集中度研究 8.影响企业审计质量的因素及其完善路径分析 9.试论高校内部审计风险及其防范 10.试论风险导向审计模式在我国会计师事务所的应用 五、统计学专业毕业论文参考题目 1. 基于多元统计方法的空气污染状况综合评价研究 2.统计方法在投资学中的应用. 3. 金融风险管理中的贝叶斯方法 4.统计数据质量评价及修正 5.低碳经济的标准与测度方法. 6.典型调查在新形势下的运用与发展 7.统计指数法在物价统计中的运用研究 8.长江水质的综合评价与预测. 9.我国股市收益率分布特征的统计分析 10.长三角区域创新能力评估指标体系与实证研究

我前几天刚刚答辩完毕,首先会给你几分钟自述,我准备的蛮多的 但是老师只叫我说下论文的结构和内容,只要把论文的东西说清楚就行。 问问题的话 老师分组都不一样 我们学院是一轮自述完毕再问问题 给你准备时间准备回答 所以问的比较专业吧 我的是针对论文中理论部分提出的 如果像是我们学校其他学院的答辩 是一个人自述接着问问题就回答的话 不给你准备时间 这样的话问题不会很难 起码不会很专业的 总体还是围绕论文展开 把论文前后都弄熟就行了 大概就是这样吧 我们答辩的时候也蛮紧张的 祝你好运咯~

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

关于贝叶斯论文范文写作

之前看过一些贝叶斯的论文后,发现很多细节不理解,对贝叶斯在各个领域的应用也不清楚,便想着找本偏科普的书来看看,于是开始阅读贝叶斯思维(Think Bayes)这本书。很薄的一本。 贝叶斯的基本理论都是源于条件概率模型,作者用一个很有意思的例子来解释了条件概率。注意:不是抓球那种老掉牙的例子。 作者希望知道自己得FCA的概率(某种心脏病,具体病名叫First Coronary Attack),根据已有的统计报告,美国每年大概有785000人次患FCA。因为美国的人口是亿,因此可以得出一个美国人患上FCA的概率是。但作者觉得这种算法不够准确,因为他并不是一个随机抽取的美国人,平均值并不能代表他的值,某个具体人患上FCA的概率需要考虑很多其他因素,例如年龄,性别等。 作者男性,45岁,这些因素增加了他患FCA的概率;而他是低血压却减低了他患FCA的概率。综合这些因素,作者算出他下年患上FCA的概率是,低于平均值。而这种考虑多种因素后算出的概率被称为条件概率。而条件概率的定义就是大家所熟知的p(A|B):B发生的时候,发生A的概率。结合作者的例子来解释就是:A代表作者患上FCA的概率,B是作者列出的影响因素的集合(年龄,性别,血压等)。 联合概率用来描述两个事件A和B同时发生的概率,记做p(A and B)=p(A)p(B)。用抛硬币来举例,第一次抛硬币正面朝上的概率记做p(A),第二次抛硬币正面朝上的概率记做p(B),那么两次都朝上的概率是p(A)p(B)=。需要注意的是,p(A and B)=p(A)p(B)并不是什么时候都成立,要求事件A和B要彼此独立,也就是p(B|A)=p(B),直白点的解释就是B发生的概率与A发生与否没有关系。抛硬币的事件就满足这个条件。 再举一个事件不相互独立的例子。假设A代表今天下雨,B代表明天下雨。通常,如果今天下雨,明天下雨的概率会比较大,因此可以得出p(B|A)>p(B)。因此呢,p(A and B)写成p(A)p(B|A)会比较准确。 综上所述,联合概率的公式可以写成:p(A and B)=p(A)p(B|A)

贝叶斯定理太有用了,不管是在投资领域,还是机器学习,或是日常生活中高手几乎都在用到它。 生命科学家用贝叶斯定理研究基因是如何被控制的;教育学家突然意识到,学生的学习过程其实就是贝叶斯法则的运用;基金经理用贝叶斯法则找到投资策 略;Google用贝叶斯定理改进搜索功能,帮助用户过滤垃圾邮件;无人驾驶汽车接收车顶传感器收集到的路况和交通数据,运用贝叶斯定理更新从地图上获得 的信息;人工智能、机器翻译中大量用到贝叶斯定理。 我将从以下4个角度来科普贝叶斯定理及其背后的思维: 1.贝叶斯定理有什么用? 2.什么是贝叶斯定理? 3.贝叶斯定理的应用案例 4.生活中的贝叶斯思维 1.贝叶斯定理有什么用? 英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。而这篇论文是在他死后才由他的一位朋友发表出来的。 (ps:贝叶斯定理其实就是下面图片中的概率公式,这里先不讲这个公式,而是重点关注它的使用价值,因为只有理解了它的使用意义,你才会更有兴趣去学习它。) 在这篇论文中,他为了解决一个“逆概率”问题,而提出了贝叶斯定理。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,比如杜蕾斯举办了一个抽奖,抽奖桶里有10个球,其中2个白球,8个黑球,抽到白球就算你中奖。你伸手进去随便摸出1颗球,摸出中奖球的概率是多大。 根据频率概率的计算公式,你可以轻松的知道中奖的概率是2/10 如果还不懂怎么算出来的,可以看我之前写的科普概率的回答: 猴子:如何理解条件概率? 而贝叶斯在他的文章中是为了解决一个“逆概率”的问题。比如上面的例子我们并不知道抽奖桶里有什么,而是摸出一个球,通过观察这个球的颜色,来预测这个桶里里白色球和黑色球的比例。 这个预测其实就可以用贝叶斯定理来做。贝叶斯当时的论文只是对“逆概率”这个问题的一个直接的求解尝试,这哥们当时并不清楚这里面这里面包含着的深刻思想。 然而后来,贝叶斯定理席卷了概率论,并将应用延伸到各个问题领域。可以说,所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。 为什么贝叶斯定理在现实生活中这么有用呢? 这是因为现实生活中的问题,大部分都是像上面的“逆概率”问题。生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。 比如天气预报说,明天降雨的概率是30%,这是什么意思呢? 我们无法像计算频率概率那样,重复地把明天过上100次,然后计算出大约有30次会下雨。 而是只能利用有限的信息(过去天气的测量数据),用贝叶斯定理来预测出明天下雨的概率是多少。 同样的,在现实世界中,我们每个人都需要预测。想要深入分析未来、思考是否买股票、政策给自己带来哪些机遇、提出新产品构想,或者只是计划一周的饭菜。 贝叶斯定理就是为了解决这些问题而诞生的,它可以根据过去的数据来预测出概率。 贝叶斯定理的思考方式为我们提供了明显有效的方法来帮助我们提供能力,以便更好地预测未来的商业、金融、以及日常生活。 总结下第1部分:贝叶斯定理有什么用? 在有限的信息下,能够帮助我们预测出概率。 所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。例如垃圾邮件过滤,中文分词,艾滋病检查,肝癌检查等。 2.什么是贝叶斯定理? 贝叶斯定理长这样: 到这来,你可能会说:猴子,说人话,我一看到公式就头大啊。 其实,我和你一样,不喜欢公式。我们还是从一个例子开始聊起。 我的朋友小鹿说,他的女神每次看到他的时候都冲他笑,他想知道女神是不是喜欢他呢? 谁让我学过统计概率知识呢,下面我们一起用贝叶斯帮小鹿预测下女神喜欢他的概率有多大,这样小鹿就可以根据概率的大小来决定是否要表白女神。 首先,我分析了给定的已知信息和未知信息: 1)要求解的问题:女神喜欢你,记为A事件 2)已知条件:女神经常冲你笑,记为B事件 所以说,P(A|B)是女神经常冲你笑这个事件(B)发生后,女神喜欢你(A)的概率。 从公式来看,我们需要知道这么3个事情: 1)先验概率 我 们把P(A)称为'先验概率'(Prior probability),即在不知道B事件的前提下,我们对A事件概率的一个主观判断。这个例子里就是在不知道女神经常对你笑的前提下,来主观判断出女 神喜欢一个人的概率,这里我们假设是50%,也就是不能喜欢你,可能不喜欢还你的概率都是一半。 2)可能性函数 P(B|A)/P(B)称为'可能性函数'(Likelyhood),这是一个调整因子,即新信息B带来的调整,作用是使得先验概率更接近真实概率。 可 能性函数你可以理解为新信息过来后,对先验概率的一个调整。比如我们刚开始看到“人工智能”这个信息,你有自己的理解(先验概率/主观判断),但是当你学 习了一些数据分析,或者看了些这方面的书后(新的信息),然后你根据掌握的最新信息优化了自己之前的理解(可能性函数/调整因子),最后重新理解了“人工 智能”这个信息(后验概率) 如果'可能性函数'P(B|A)/P(B)>1,意味着'先验概率'被增强,事件A的发生的可能性变大; 如果'可能性函数'=1,意味着B事件无助于判断事件A的可能性; 如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小 还是刚才的例子,根据女神经常冲你笑这个新的信息,我调查走访了女神的闺蜜,最后发现女神平日比较高冷,很少对人笑。所以我估计出'可能性函数'P(B|A)/P(B)=(具体如何估计,省去1万字,后面会有更详细科学的例子) 3)后验概率 P(A|B)称为'后验概率'(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。这个例子里就是在女神冲你笑后,对女神喜欢你的概率重新预测。 带入贝叶斯公式计算出P(A|B)=P(A)* P(B|A)/P(B)=50% * 因此,女神经常冲你笑,喜欢上你的概率是75%。这说明,女神经常冲你笑这个新信息的推断能力很强,将50%的'先验概率'一下子提高到了75%的'后验概率'。 在得到预测概率后,小鹿自信满满的发了下面的表白微博:无图 稍后,果然收到了女神的回复。预测成功。无图 现在我们再看一遍贝叶斯公式,你现在就能明白这个公式背后的最关键思想了: 我们先根据以往的经验预估一个'先验概率'P(A),然后加入新的信息(实验结果B),这样有了新的信息后,我们对事件A的预测就更加准确。 因此,贝叶斯定理可以理解成下面的式子: 后验概率(新信息出现后的A概率)=先验概率(A概率) x 可能性函数(新信息带来的调整) 贝叶斯的底层思想就是: 如果我能掌握一个事情的全部信息,我当然能计算出一个客观概率(古典概率)。 可是生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。也就是,在主观判断的基础上,你可以先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数)。 如果用图形表示就是这样的: 其实阿尔法狗也是这么战胜人类的,简单来说,阿尔法狗会在下每一步棋的时候,都可以计算自己赢棋的最大概率,就是说在每走一步之后,他都可以完全客观冷静的更新自己的信念值,完全不受其他环境影响。 3.贝叶斯定理的应用案例 前面我们介绍了贝叶斯定理公式,及其背后的思想。现在我们来举个应用案例,你会更加熟悉这个牛瓣的工具。 为了后面的案例计算,我们需要先补充下面这个知识。 1.全概率公式 这个公式的作用是计算贝叶斯定理中的P(B)。 假定样本空间S,由两个事件A与A'组成的和。例如下图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。 这时候来了个事件B,如下图: 全概率公式: 它的含义是,如果A和A'构成一个问题的全部(全部的样本空间),那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。 看到这么复杂的公式,记不住没关系,因为我也记不住,下面用的时候翻到这里来看下就可以了。 案例1:贝叶斯定理在做判断上的应用 有两个一模一样的碗,1号碗里有30个巧克力和10个水果糖,2号碗里有20个巧克力和20个水果糖。 然后把碗盖住。随机选择一个碗,从里面摸出一个巧克力。 问题:这颗巧克力来自1号碗的概率是多少? 好了,下面我就用套路来解决这个问题,到最后我会给出这个套路。 第1步,分解问题 1)要求解的问题:取出的巧克力,来自1号碗的概率是多少? 来自1号碗记为事件A1,来自2号碗记为事件A2 取出的是巧克力,记为事件B, 那么要求的问题就是P(A1|B),即取出的是巧克力,来自1号碗的概率 2)已知信息: 1号碗里有30个巧克力和10个水果糖 2号碗里有20个巧克力和20个水果糖 取出的是巧克力 第2步,应用贝叶斯定理 1)求先验概率 由于两个碗是一样的,所以在得到新信息(取出是巧克力之前),这两个碗被选中的概率相同,因此P(A1)=P(A2)=,(其中A1表示来自1号碗,A2表示来自2号碗) 这个概率就是'先验概率',即没有做实验之前,来自一号碗、二号碗的概率都是。 2)求可能性函数 P(B|A1)/P(B) 其中,P(B|A1)表示从一号碗中(A1)取出巧克力(B)的概率。 因为1号碗里有30个水果糖和10个巧克力,所以P(B|A1)=30/(30+10)=75% 现在只有求出P(B)就可以得到答案。根据全概率公式,可以求得P(B)如下图: 图中P(B|A1)是1号碗中巧克力的概率,我们根据前面的已知条件,很容易求出。 同样的,P(B|A2)是2号碗中巧克力的概率,也很容易求出(图中已给出)。 而P(A1)=P(A2)= 将这些数值带入公式中就是小学生也可以算出来的事情了。最后P(B)= 所以,可能性函数P(A1|B)/P(B)=75%/ 可能性函数>1.表示新信息B对事情A1的可能性增强了。 3)带入贝叶斯公式求后验概率 将上述计算结果,带入贝叶斯定理,即可算出P(A1|B)=60% 这个例子中我们需要关注的是约束条件:抓出的是巧克力。如果没有这个约束条件在,来自一号碗这件事的概率就是50%了,因为巧克力的分布不均把概率从50%提升到60%。 现在,我总结下刚才的贝叶斯定理应用的套路,你就更清楚了,会发现像小学生做应用题一样简单: 第1步. 分解问题 简单来说就像做应用题的感觉,先列出解决这个问题所需要的一些条件,然后记清楚哪些是已知的,哪些是未知的。 1)要求解的问题是什么? 识别出哪个是贝叶斯中的事件A(一般是想要知道的问题),哪个是事件B(一般是新的信息,或者实验结果) 2)已知条件是什么? 第2步.应用贝叶斯定理 第3步,求贝叶斯公式中的2个指标 1)求先验概率 2)求可能性函数 3)带入贝叶斯公式求后验概率

贝叶斯推理研究综述_思想政治教育

基于朴素贝叶斯的模型的论文研究

在介绍朴素贝叶斯算法之前,我们来看看关于统计学的一些基础知识: 贝叶斯定理需要先验知识作为支撑,而先验知识需要大量的计算和历史数据,因此在很长一段时间内,无法得到广泛应用。只有计算机诞生以后,它才获得真正的重视。人们发现,许多统计量是无法进行客观判断的,而互联网时代出现的大型数据集,再加上告诉运算能力,为验证这些统计量提供了方便,也为应用贝叶斯定理创造了条件。 条件概率:同理可得:即:全概率公式: 若事件  、  、…… 构成一个完备事件组即 ,且都有正概率,那么对于任意一个事件A,有如下公式贝叶斯公式: 贝叶斯公式与全概率公式相反,是在已知 的基础上,求  。 通过对条件概率的简单变形,就可以得到贝叶斯公式:贝叶斯公式由三部分形成,先验概率、后验概率、似然估计。其中后验概率 = 先验概率 * 似然估计。在上述公式中, 是先验概率, 是似然估计, 是后验概率。 所谓先验概率就是在事件A发生之前,我们对B事件概率的一个判断。后验概率则指的是在事件A发生之后,我们对B事件概率的重新评估。似然估计是一个调整因子或者修正参数,在我们计算事件概率的时候,需要不断通过修正参数使得我们所求的概率无限接近于真实概率。 如果似然估计   ,那么表示A事件的发生提高了B事件发生的概率。相反的,如果似然估计  ,那么表示A事件的发生降低了B事件发生的概率。 从统计学知识回到我们的数据分析。假如我们的分类模型样本是:即我们有m个样本,每个样本有n个特征,特征输出有K个标签,定义为 。从样本我们可以学习得到朴素贝叶斯的先验分布 ,条件概率分布 ,然后我们就可以用贝叶斯公式得到 :分析上面的式子,  =   即标签 在训练集中出现的频数。但是 是一个复杂的n个维度的条件分布,很难计算。所以为了简化计算,朴素贝叶斯模型中假设n个特征之间相互独立,于是有:最后回到我们要解决的问题,我们的问题是给定测试集的一个新样本特征 ,我们如何判断它属于哪个类型? 贝叶斯模型的目标是后验概率最大化来判断分类。我们只要计算出所有的K个条件概率 然后找出最大的条件概率对应的类别。 我们预测的类别 是使 最大的类别:分析上式可知分母 是固定值,因此预测公式可以简化为:接着我们利用朴素贝叶斯的独立性假设,就可以得到通常意义上的朴素贝叶斯推断公式:在朴素贝叶斯算法中,学习意味着估计 和 。可以用极大似然估计法估计相应的概率。先验概率 的极大似然估计是:其中 即样本中标签 出现的次数在总样本数 中的占比。 第 个特征 可能的取值集合为 ,似然函数 即 标签中,第 个特征 中各种取值的次数在 标签出现总次数中的占比。 在用极大似然估计时,可能特征 的某些取值在 标签样本中没有出现,这时似然函数为 ,同时导致目标函数为 ,这会使分类产生偏差。为解决这一问题采用贝叶斯估计:其中 是 标签中第 个特征不重复数值的个数。当 是就是极大似然估计,当 时,称为拉普拉斯平滑。同样,先验概率的贝叶斯估计是: 小伙伴们如果觉得文章还行的请点个赞呦!!同时觉得文章哪里有问题的可以评论一下  谢谢你!

极限计算的若干方法研究论文

摘要:本文介绍了计算极限的几种方法,讨论如何用定积分、幂级数、微分中值定理、O-Stolz公式、泰勒展式等方法计算极限.关键词:计算极限;定积分;幂级数;泰勒展式1. 引言极限思想是许多科学领域的重要思想之一. 因为极限的重要性,从而怎样求极限也显得尤其重要. 对于一些复杂极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果. 为了解决求极限的问题,有不少学者曾探讨了计算极限的方法(见 [1]-[4]). 本文也介绍了计算极限的几种方法,并对文献[1]-[4]的结论进行了推广,讨论如何利用定积分、幂级数、O-Stolz公式、泰勒展式、微分中值定理计算极限,并且以实例来阐述方法中蕴涵的数学思想.2. 利用定积分求极限3. 利用幂级数求极限 利用简单的初等函数(特别是基本初等函数)的麦克劳林展开式,常能求得一些特殊形式的数列极限.4. 利用级数收敛性判定极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系. 因此,数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.5 .利用O-Stolz公式计算极限6. 利用泰勒公式求极限等价无穷小代换是求极限的重要方法,往往可以减少计算量,使问题得以简化. 但一般说来,这种方法仅限于求两个无穷小量的乘积或除的极限,而对两个无穷小量非乘且非除的极限,以上方法不能凑效,而Taylor公式代换是解决此类极限问题的一种有效的方法.7. 利用微分中值定理求极限Lagrange定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛,下面我们来看一下Lagrange定理在求极限中的应用 .参考文献[1]裴礼文. 数学分析中的典型问题与方法[M]. 北京:高等教育出版社,1993. [2]刘玉琏. 数学分析讲义[M]. 北京: 高等教育出版社, 1997.[3]同济大学数学教研室. 高等数学(第四版)[M]. 北京:高等教育出版社, 1996.[4]费定晖,周学圣. 数学分析习题集题解[M]. 山东: 山东科学技术出版社,2002.(作者杨海珍系首都师范大学在读研究生)注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。(剩余0字)

极限的计算方法总结如下:

1、抽象数列求极限这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。

2、具体的求极限,可以用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。

3、如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

4、若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

5、若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。

6、若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

7、求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

极限:

极限是微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念均由其定义。它可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势,也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的影响趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

数列求极限的方法总结如下:

由定义求极限。

极限的本质一既是无限的过程,又有确定的结果一方面可从函数的变化过程的趋势抽象得出结论,另一方面又可从数学本身的逻辑体系下验证其结果。然而并不是每一道求极限的题我们都能通过直观观察总结出极限值,因此由定义法求极限就有一定的局限性,不适合比较复杂的题。

利用函数的连续性求极限。

此方法简单易行,但不适合于f(x)在其定义区间内是不连续的函数,及f(x)在x处无定义的情况。

利用极限的四则运算法则和简单技巧求极限。

极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件。

满足条件者,方能利用极限四则运算法则进行求之,不满足条件者,不能直接利用极限四则运算法则求之。

但是,并非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些简单技巧如折项,分子分母同乘某一因子,变量替换,分子分母有理化等等。

利用两边夹定理求极限。

定理如果 XsZsY,而lim=limy=,则limZ=A。

两边夹定理运用的关键:适当选取两边的函数(或数列),并且使其极限为同一值。

注意:在运用两边夹定理要保证所求函数(或数列)通过放缩后所得的两边的函数(或数列)的极限是同一值否则不能用此方法求极限。

利用单调有界原理求极限。

单调有界准则即单调有界数列必定存在极限。使用单调有界准则时需证明两个问题:一个是数列的单调性,第二个是数列的有界性。

求极限时,在等式的两边同时取极限,通过解方程求出合理的极限值,利用单调有界原理求极限有两个难点:一是证明数列的单调性,二是证明数列的有界性,在证明数列的单调性和数列的有界性时,我们通常都采用数学归纳法。

利用等价无穷小代换求极限。

在实际计算过程中利用等价无穷小代换法或与其它方法相结合,不失为一种行之有效的方法,但并非计算过程中所有的无穷小量都能用其等价的无穷小量来进行计算。用等价无穷小代换时,只能代换分子、分母中的乘积因子,而不能代换其中的加减法因子。

于是用等价无穷小代换的问题便集中到对于分子、分母中的加减法因子如何进行x的等价无穷小代换这一点上,在利用等价无穷小代换的方法求极限时,必须把分子(或分母)看作一个整体,用整个分子(或分母)的等价无穷小去代换。

利用泰勒展式求极限.

运用等价无穷小代换方法求某些极限,往往可以减少计算量,使问题得以简化,但一般说来,这种方法仅限于求两个无穷小量是乘或除的极限,而对两个无穷小量非乘或非除的极限,对于一些未能定函数极限形态的关系式,不能用必达法则及等价无穷小代换方法,须用泰公式去求极限。

相关百科
热门百科
首页
发表服务