职称论文百科

张敦力教授发表的论文一览

发布时间:2024-07-03 04:48:43

张敦力教授发表的论文一览

1. 专业设置紧扣时代的需要、人才培养规模屡创新高目前,会计学院设有会计学、注册会计师、财务管理等三个本科专业和方向,还开办有国际会计-ACCA实验班、国际会计中澳班,以及国际会计CGA实验班。每年招生报名火爆,本科生一次就业率一直高达96%以上,硕士、博士研究生更是供不应求。恢复高考的1977年,当时的会计系只招收了36名学生。现在,会计学院每年招收全日制本科生500余人、全日制硕士研究生150余人、MPAcc教育中心100余人、博士研究生20余人,在站博士后8人。即使每年都增加各类学生的招收计划,但仍然是“僧多粥少”。2. 实施“人才精品”战略,保证人才培养的高质量人才培养质量的高低,除了“原材料” 本身的素质外,“加工”过程更为重要。会计学院一直以“人才精品”战略为指导培养各类学生。在人才“精品战略”中,课程建设和教材建设又是其中重要的一环。目前,会计学院已经成功建设了系列精品课程体系。《中级会计学》(夏成才教授领衔)、《审计学》(张龙平教授领衔)为国家级精品课程;《会计学原理》(唐国平教授领衔)、《财务管理》(张志宏教授领衔)、《高级财务管理》(张敦力教授领衔)、《会计学》(汤湘希教授领衔)为省级精品课程,《高级财务会计》(罗飞教授领衔)、《成本会计》(许亚湖教授领衔)等为校级精品课程,形成了完整的精品课程体系。这一体系的建立,不仅保证了学生培养质量的稳步提高,更带动了全国和湖北省相关院校会计学课程体系的建设。3. 良好的综合素质和突出的创新能力,充分展示了当代大学生的风采素质教育是当代教育的根本、创新是一个民族的灵魂。会计学院特别强调对学生知识与素质同步、实践能力与创新能力的强化培养,要求全面发展。据不完全统计,本科生中获得“全国红旗团支部”“全国大学生创业设计大赛”等全国和省部级奖励100余项,6人次获得ACCA课程考试全球第一或中国大区第一;硕士研究生论文中,有10余篇获得湖北省优秀硕士学位论文;还有多篇博士学位论文获湖北省优秀博士学位论文,更有全国百篇优秀博士学位论文。4. 已毕业学生工作业绩卓著、彰显会计学科人才培养的实力中南财经政法大学会计学院已毕业的学生中,在各自的工作岗位上业绩卓著,彰显了会计学科人才培养的实力。已毕业的学生中有一大批政界名流、学界名家和商界精英。在政界中,有国家税务总局局长王军,中国注册会计师协会陈毓圭秘书长,财政部会计资格评价中心肖书胜主任,财政部监督检查局郜进兴副局长,外交部财务司前任和现任副司长蔡浩明和蔡思平;福建省审计厅副厅长、厦门大学博士生导师、全国政协委员王光远教授,海南省财政厅徐唐先厅长,广东省审计厅李新副厅长,广州市财政局张杰明局长,湖南航天管理局伍青局长,湖北省发展与改革委员会路策副主任,湖北省财政厅洪流副厅长等等。

别敦荣教授发表论文

好。别敦荣是厦门大学高等教育发展研究中心主任,厦门大学教育研究院副院长,主编、参著著作高达20余本,发表学术论文150篇,并且受邀多所高校作专题学术报告。

该院下设高等教育研究所、基础教育研究所、心理学研究所、教育评估与开发研究所、院校发展研究所、院校发展研究中心、国际与比较教育研究中心;同时设有国家大学生文化素质教育基地、全国学位与研究生教育发展中心武汉研究基地、《高等教育研究》编辑部、《高等工程教育研究》编辑部和院办公室。高等教育研究所高等教育研究所成立于1980年10月,当时称为高等教育研究室。1985年6月13日,高等教育研究室扩充改建为高等教育研究所;2000年12月16日教育科学研究院成立后,高等教育研究所为研究院下属研究所之一。现有高等教育学硕士学位点和高等教育学博士学位点,高等教育学是湖北省重点学科。该所主要开展高等教育理论与政策研究,尤以大学文化素质教育、大学教育思想、院校管理与发展研究闻名,在国内有重要影响。现承担包括全国教育科学“十五”规划重点课题、教育部新世纪教学改革工程项目课题、全国学位与研究生教育发展中心“十五”重点科研课题、湖北省教育科学重点课题、福特基金会国际合作课题等在内的科研项目20余项。近期确立的重点研究方向为高等教育学学科建设研究、现代大学制度研究、大学文化素质教育研究、研究型大学与世界一流大学研究、学位与研究生教育研究。 该所开设的硕士研究生课程主要有:高等教育学、高等教育管理学、中外高等教育史、大学德育论、比较高等教育、高等教育改革与发展专题研究、高等教育科学研究方法等;开设的博士研究生课程主要有:高等教育学专题研究、高等教育管理专题研究、大学德育专题研究、教育哲学专题研究等。院校研究所院校研究所成立于2003年5月,是湖北省高等学校人文社会科学重点研究基地--院校发展研究中心的核心机构,是中国高等教育学会院校研究分会的会长单位,刘献君教授任会长。现有教育经济与管理硕士学位点和教育经济与管理博士学位点。本所主要开展中国特色的院校研究理论与方法研究、高等学校战略规划与战略管理研究、院校咨询研究等方面的研究,尤以院校管理与发展研究闻名,在国内有重要影响。现承担包括教育部重大攻关项目、国家社会科学基金“十一五”规划课题、教育部社科司课题、教育部新世纪教学研究所课题等在内的科研项目10余项。近期着重开展院校研究案例库建设和院校研究数据库建设。本所开设的硕士研究生课程主要有:院校研究概论、高等学校战略与规划、教育组织行为研究、教育人力资源管理、教育管理信息系统、教育政策分析、教育法学、教育统计方法等;开设的博士研究生课程主要有:院校研究、教育政策与法律研究专题、教育管理前沿问题研究专题、教育研究方法高级讲座等。现任所长为赵炬明教授,副所长为陈敏教授。 心理学研究所心理学研究所成立于2000年12月。该所始终坚持教学和科研并重的原则。在人才培养上,重点面向硕士和博士研究生,承担的主要课程有:教育心理学、心理学原理、管理心理学、大学生心理学和认知心理学等。在科学研究上,承担和参与了四项国家自然科学基金、国家哲学社会科学基金资助项目,承担了多项湖北省和学校资助的科研项目。该所主要的研究方向有:学习、记忆和思维等认知过程的研究,教育心理学,大学生品德心理、大学管理心理等。 教育学研究所教育学研究所成立于2000年。该所坚持教学和科研并重的原则。在人才培养上,重点培养硕士生和博士生,也面向全校开设公选课程。该所共有5名教师,2名教授,2名副教授,2名讲师,除一名教授外,其余五位教师均在国内知名高校如北京大学、华东师范大学、华中师范大学和华中科技大学获得博士学位,两位教师分别在美国和英国访学一年。该所现开设的课程主要有:教育学原理、教育社会学、德育原理、中外教育史、课程论、教学论、教师教育、家庭教育学等。在科研方面,该所承担了全国教育科学规划“十五”重点课题和科技部“十五”重点课题湖北子项目等多项课题。 院校发展研究中心华中科技大学院校发展研究中心成立于2000年3月,是湖北省高校人文社会科学重点研究基地。中心主任刘献君教授为中国高等教育学会院校研究分会会长。中心拥有坚实的学科平台,专兼结合的高水平教师队伍,设有院校发展与战略规划、学生学习与发展、教师聘任与发展、院校数据系统设计与分析等研究方向。中心成立以来,经过十多年的建设,取得了显著成绩,引领着我国院校研究的发展方向。中心已出版著作20余部,在CSSCI源刊发表论文200余篇,其中8篇论文被《新华文摘》全文转载;承担科研项目30余项,获省部级以上科研奖励10余项,获省部级以上教学成果奖4项;自2003年以来,定期举办院校研究学术研讨会,单年举办国内会议,双年举办国际会议。现已成功举办国际会议5次,国内会议8次,国际研讨班4次。中心注重建设院校研究案例库,定期出版院校研究案例辑,为我国院校研究人员提供交流与发表的平台。中心教师曾受邀为400余所高校做学术报告,提供管理咨询,帮助40余所高校制定战略规划,受到广泛好评。中心多次派教师到美国、英国、德国、法国、日本、澳大利亚等国访问交流,聘请多位美国学者为兼职教授,与美国院校研究会合作举办国际研讨班及培养研究生。2012年10月,中心下属的中美院校研究国际科研合作中心成立,将与美国院校研究会、加州大学、佛罗里达州立大学等进行合作,引进院校研究课程,授权翻译出版著作,进行数据共享。中心的发展目标是:以推动我国院校研究信息系统建设为重点,深化院校研究的专题研究,探索院校研究理论和方法,培训院校研究人员;将中心建设成为我国院校研究的人才培养与培训中心、科学研究中心、管理咨询服务中心和对外交流中心,提高我国高校管理信息化与科学化水平,为国家高等教育改革提供决策咨询;将中心建设成为国家级人文社会科学重点基地,并在国际院校研究领域占据重要地位和享有较高声誉。 国际与比较教育研究中心国际与比较教育研究中心成立于2000年,是一个跨所研究中心,该中心国际学术交流活动频繁:沈红教授曾赴美国、日本、加拿大、韩国、泰国、越南等6个国家和港、台2个地区学习或访问; 别敦荣副教授曾赴美国和法国学习或访问; 张晓明副教授曾赴日本和加拿大访问; 陈敏副教授曾赴日本学习或访问; 周艳副教授曾赴英国学习。 本中心所承担的比较教育研究课题主要有:学生贷款----亚太地区的国际比较、高等教育学生财政与学生资助的国际比较、多校园大学管理的国际比较、研究型大学的国际比较、高等教育大众化的世界趋势、女性参与高等教育的国际比较、高等教育国际化----两岸三地比较研究、中美大学学术管理比较研究、西方国家高等教育的发展研究、中英教师专业社会化问题研究、私立高校赢利问题的比较研究,美国、英国、法国、德国、日本学位与研究生教育比较研究。国家大学生文化素质教育基地大学生文化素质教育基地成立于1997年,1999年经教育部批准,成为国家大学生文化素质教育基地。华中科技大学率先倡导加强大学生文化素质教育,以人文教育和科技教育相融合作为办学指导思想之一,经过几年的探索,已初步形成了覆盖第一课堂、第二课堂和社会实践三个层次、六个方面的文化素质教育体系,即:1、实施按前三个学期不分专业、系科打通培养的方案,以强化基础教育和文化素质教育;2、实行人文社会科学辅修专业制;3、开设人文社会科学选修课,每年举行一次中国语文水平达标考试;4、举办人文讲座和自然科学讲座,每年出版一卷《中国大学人文启示录》;5、开展形式多样、内容高雅健康的校园文化、科技、艺术活动;6、开展社会实践活动,并纳入课程体系。基地设有学术委员会、《中国语文》水于达标测试工作室、《中国大学人文启示录》编辑部等机构。 院校发展研究基地华中科技大学院校发展研究基地是湖北省文科重点建设基地、学校文科重点建设基地,是学院的重点发展方向之一。 院校发展研究基地的建设目标是:建设成为我国院校管理与发展研究方面的科学研究中心、人才培养中心、信息资料中心和对外交流中心,使中心整体科研水平和参与国家高教改革重大决策的能力居于国内领先地位,并在国际学术界占据重要地位和享有较高声誉,力争成为国家级重点研究基地。将中心建设成为联系全国高校和校外研究机构的伞形网络中心,并起到对外学术交流窗口的作用,成为全国高校院校发展研究的学术交流和情报资料基地。造就和培养具有突出学术成就和良好学风的国内一流学术带头人和中青年学术骨干队伍,使中心成为全国从事院校发展研究的人才培养和培训基地,成为全国的研究咨询基地和教育部进行高校改革决策的智囊团。区域高等教育发展研究中心“区域高等教育发展研究中心”是我国最早成立的专门调查与研究区域高等教育发展问题的跨院校研究机构,2008年筹建,2009年正式获批为湖北省高等学校人文社会科学重点研究基地,挂靠在华中科技大学教育科学研究院。中心下设5个分中心,其中区域高等教育调查与评估研究中心、区域高等教育理论与比较研究中心、区域高等教育政策与法规研究中心挂靠在中心本部;区域产学研合作与发展研究中心挂靠武汉工程大学,区域高职教育发展与创新研究中心挂靠武汉职业技术学院。《高等教育研究》编辑部《高等教育研究》是全国高等教育学研究会会刊,由华中科技大学与全国高等教育学研究会共同主办。1980年创刊,面向国内外公开发行,杂志社设在华中科技大学内。 《高等教育研究》以繁荣高等教育科学,促进高教改革发展为办刊宗旨。作为高教研究类综合性学术理论刊物,杂志注重学术性、前瞻性和时代性,在长期的办刊实践中形成了注重反映高教研究前沿的学术动态,大力倡导不同观点的学术争鸣,特别重视扶植中青年作者,积极加强与海外专家学者的联系等办刊特色。杂志现辟有高等教育改革与发展、教育基本理论、高等教育体制与结构、院校研究、教学理论与教学改革、德育与美育、高等职业技术教育、学位与研究生教育、高等教育史、国际与比较高等教育、探索与争鸣以及高等教育学科建设等主要栏目,并不定期地组织各种专题研究,刊登的论文具有选材面广、观点新颖、针对性强和勇于探索等特点。《高等教育研究》是《中文社会科学引文索引》(CSSCI)来源期刊。据2001年3月11日《光明日报》报道,南京大学中国社会科学研究评价中心对1998年全国社会科学期刊按影响因子排序,本刊名列第19,成为进入前20名的唯一教育类期刊。《高等教育研究》1994、1996、1998、2000年连续四次入选全国中文核心期刊,1995、1998和2001年连续三次被评为湖北省优秀期刊。在高教界专家学者和广大读者、在作者的关心支持下,杂志的办刊质量和学术影响在全国同类期刊中名列前茅,被学术界公认为最具权威性的高等教育学术期刊之一。《高等工程教育研究》编辑部《高等工程教育研究》学报1982年由教育部党组决定创办,1983年创刊。20多年来,学报一贯坚持探讨教育规律、开展学术讨论、反映研究成果、交流教育信息、推动教育改革、促进国际交流的宗旨;以其工程应用性、学术前沿性的鲜明特色,深受我国高教界、工程界的好评——1992年、1996年、2000年、2004年连续四届被评为“全国中文核心期刊”。1998年11月,中国工程院成立教育委员会,负责指导与协调工程院在工程教育方面(含工、农、医等领域)的咨询研究和学术活动,就中央和地方政府有关工程教育的改革与发展提出建议,同年决定,将《高等工程教育研究》作为工程院教委会会刊。根据工程院教委会的安排,本刊作为重要的研究资料,每个院士人手一册,从而进一步扩大了在全国高教界和工业界的影响。《高等工程教育研究》是我国第一份、也是唯一一份面向工程教育研究的全国性权威学术期刊。常设栏目有:院士论坛、校长论坛、工程教育前沿、高等教育经济与政策、高等教育管理、学科与专业建设、院校发展研究、企业家论坛、国防高等工程教育、研究生教育、国际高等工程教育撷英、高职高专教育、教学工作研究,并根据需要定期开设国家级优秀教学成果等专栏。

张慜教授发表的论文

本人从智网上找的 有PDF格式 这是从上面转下来的 统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi Vol.24 No.1合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c=4.8 K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在4.8 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi Vol.24 No.1为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc=4.6 K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为2.46 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc=0.66 K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)0.5Mn1.25[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel H.M. J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel H.M. Proc. R.A. Welch Found. Chem. Res.1967;11:144还在常温区,如[Fe(Htrz)4 Wickman H.H. ,Trozzolo A.M. ,Williams H.J. ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller J.S. ,Calabrese J.C. ,Epstein A.J. ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 ManriquezJ.M. ,Yee G.T. ,Mclean R.S. ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong Z.J. ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,Eng.Series, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler W.D. ,Babel D.Z. ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 MillerJ.S. ,EpsteinA.J.Angew. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,NovakM.A. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand P.M. ,Khemani K.C. ,Koch A. ,et al. Science,1991;254:301四、展 望16 MillerJ.S. ,ZhangJ.H. ,Reiff W.M. ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 MillerJ.S. ,CalabressJ.C. ,DixonD.A. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,LongS.M. ,MillerJ.S. Phys.Lett.A,1993;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 MillerJ.S. Inorg. Chem. ,2000;39:4392估计效果很不好 如果想要的话,留个邮箱,给你发过去

原因是跟导师发生了关于论文的争执,导师不准博士按照自己意愿行事,博士觉得对不起自己良心就自杀了。

一、化学的来由 化学的英文词为Chemistry,法文Chimie,德文Chemie,它们都是从一个古字、即拉丁字chemia,希腊字Xηwa(Chamia),希伯莱字Chaman或Haman,阿拉伯字Chema或Kema,埃及字Chemi演化而来的.它的最早来源难以查考.从现存资料看,最早是在埃及第四世纪的记载里出现的.所以有人认为可以假定是从埃及古字Chemi来的,不过这个名字的意义很晦涩,有埃及、埃及的艺术、宗教的迷惑、隐藏、秘密或黑暗等意义。其所以有这些意义,大概因为埃及在西方是化学记载诞生的地方,也是古代化学极为发达的地方,尤其是在实用化学方面。例如,埃及在十一朝代进已有一种雕刻表示一些工人下在制造玻璃,可见至少在公元前2500年以前,埃及已知道玻璃的制造方法了。再从埃及出土的木乃伊看,可知在公元前一、二千年时已精于使用防腐剂和布帛染色等技术。所以古人用埃及或埃及的艺术来命名“化学”。至于其它几种意义,可能因为古人认为化学是一种神奇和秘密的事业以及带有宗教色彩的缘故。 中国的化学史当然也是毫不逊色的。大约5000-11000年前,我们已会制作陶器,3000多年前的商朝已有高度精美的青铜器,造纸、磁器、火药更是化学史上的伟大发明。在十六、十七世纪时,中国算得上是世界最先进的国家。“化学”二字我国在1856年开始使用。最早出现在英国传教士韦廉臣在1856年出版的《格物探原》一书中。 二、化学的几个发展阶段 远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。。 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。 定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。 科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。 这里主要讲述近二百多年来的化学史故事。这是化学得到快速发展的时期,是风云变幻英雄辈出的期。让我们一道去体验当年化学家所经历的艰难险阻,在近代化学史峰回路转的曲折历程中不倦跋涉,领略他们拨开重重迷雾建立新理论、发现新元素、提出新方法时的无限风光。 三、化学学科在探索中成长 化学的发展可以说是日新月异,尤其是它的边缘学科或者说是它的分支学科,譬如生物化学、物理化学、晶体化学等等,令人目不暇接。就眼下炒得过热的基因工程、克隆技术以及共轭电场论等,更是令人眼花缭乱。而古往今来,有多少化学家为化学的发展做出了难以估量的贡献。你想了解他们吗?化学名人风采将带您走近他们。 燃素说的影响 。可燃物如炭和硫磺,燃烧以后只剩下很少的一点灰烬;致密的金属煅烧后得到的锻灰较多,但很疏松。这一切给人的印象是,随着火焰的升腾,什么东西被带走了。当冶金工业得到长足发展后,人们希望总结燃烧现象本质的愿望更加强烈了。 1723年,德国哈雷大学的医学与药理学教授施塔尔出版了教科书《化学基础》。他继承并发展了他的老师贝歇尔有关燃烧现象的解释,形成了贯穿整个化学的完整、系统的理论。《化学基础》是燃素说的代表作。 施塔尔认为燃素存在于一切可燃物中,在燃烧过程中释放出来,同时发光发热。燃烧是分解过程: 可燃物==灰烬+燃素 金属==锻灰+燃素 如果将金属锻灰和木炭混合加热,锻灰就吸收木炭中的燃素,重新变为金属,同时木炭失去燃素变为灰烬。木炭、油脂、蜡都是富含燃素的物质,燃烧起来非常猛烈,而且燃烧后只剩下很少的灰烬;石头、草木灰、黄金不能燃烧,是因为它们不含燃素。酒精是燃素与水的结合物,酒精燃烧时失去燃素,便只剩下了水。 空气是带走燃素的必需媒介物。燃素和空气结合,充塞于天地之间。植物从空气中吸收燃素,动物又从植物中获得燃素。所以动植物易燃。 富含燃素的硫磺和白磷燃烧时,燃素逸去,变成了硫酸和磷酸。硫酸与富含燃素的松节油共煮,磷酸(当时指P2O5)与木炭密闭加热,便会重新夺得燃素生成硫磺和白磷。而金属和酸反应时,金属失去燃素生成氢气,氢气极富燃素。铁、锌等金属溶于胆矾(CuSO4·5H2O)溶液置换出铜,是燃素转移到铜中的结果。 燃素说尽管错误,但它把大量的化学事实统一在一个概念之下,解释了冶金过程中的化学反应。燃素说流行的一百多年间,化学家为了解释各种现象,做了大量的实验,积累了丰富的感性材料。特别是燃素说认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近、现代化学思维的基础。我们现在学习的置换反应,是物质间相互交换成分的过程;氧化还原反应是电子得失的过程;而有机化学中的取代反应是有机物某一结构位置的原子或原子团被其它原子或原子团替换的过程。这些思想方法与燃素说多么相似。 舍勒和普里斯特里发现氧气的制法 :令后人尊敬的瑞典化学家舍勒的职业是药剂师--chemist,他长期在小镇彻平的药房工作,生活贫困。白天,他在药房为病人配制各种药剂。一有时间,他就钻进他的实验室忙碌起来。有一次,后院传来一声爆鸣,店主和顾客还在惊诧之中,舍勒满脸是灰地跑来,兴奋地拉着店主去看他新合成的化合物,忘记了一切。对这样的店员,店主是又爱又气,但从来不想辞退他,因为舍勒是这个城市最好的药剂师。 到了晚上,舍勒可以自由支配时间,他更加专心致志地投入到他的实验研究中。对于当时能见到的化学书籍里的实验,他都重做一遍。他所做的大量艰苦的实验,使他合成了许多新化合物,例如氧气、氯气、焦酒石酸、锰酸盐、高锰酸盐、尿酸、硫化氢、升汞(氯化汞)、钼酸、乳酸、乙醚等等,他研究了不少物质的性质和成分,发现了白钨矿等。至今还在使用的绿色颜料舍勒绿(Scheele’s green),就是舍勒发明的亚砷酸氢铜(CuHAsO3)。如此之多的研究成果在十八世纪是绝无仅有的,但舍勒只发表了其中的一小部分。直到1942年舍勒诞生二百周年的时候,他的全部实验记录、日记和书信才经过整理正式出版,共有八卷之多。其中舍勒与当时不少化学家的通信引人注目。通信中有十分宝贵的想法和实验过程,起到了互相交流和启发的作用。法国化学家拉瓦锡对舍勒十分推崇,使得舍勒在法国的声誉比在瑞典国内还高。 在舍勒与大学教师甘恩的通信中,人们发现,由于舍勒发现了骨灰里有磷,启发甘恩后来证明了骨头里面含有磷。在这之前,人们只知道尿里有磷。 1775年2月4日,33岁的舍勒当选为瑞典科学院院士。这时店主人已经去世,舍勒继承了药店,在他简陋的实验室里继续科学实验。由于经常彻夜工作,加上寒冷和有害气体的侵蚀,舍勒得了哮喘病。他依然不顾危险经常品尝各种物质的味道--他要掌握物质各方面的性质。他品尝氢氰酸的时候,还不知道氢氰酸有剧毒。1786年5月21日,为化学的进步辛劳了一生的舍勒不幸去世,终年只有44岁。舍勒发现氧气的两种制法是在1773年。第一种方法是分别将KNO3、Mg(NO3)2、Ag2CO3、HgCO3、HgO加热分解放出氧气: 2KNO3==2KNO2+O2↑ 2Mg(NO3)2 == 2MgO+4NO2↑+O2↑↑ 2Ag2CO3==4Ag+2CO2↑+O2↑ 2HgCO3==2Hg+2CO2↑+O2↑ 2HgO==2Hg+O2↑ 第二种方法是将软锰矿(MnO2)与浓硫酸共热产生氧气: 2MnO2+2H2SO4(浓)== 2MnSO4+2H2O+O2↑ 舍勒研究了氧气的性质,他发现可燃物在这种气体中燃烧更为剧烈,燃烧后这种气体便消失了,因而他把氧气叫做“火气”。舍勒是燃素说的信奉者,他认为燃烧是空气中的“火气”与可燃物中的燃素结合的过程,火焰是“火气”与燃素相结合形成的化合物。他将他的发现和观点写成《论空气和火的化学》。这篇论文拖延了4年直到1777年才发表。而英国化学家普里斯特里在1774年发现氧气后,很快就发表了论文。 普里斯特里始终坚信燃素说,甚至在拉瓦锡用他们发现的氧气做实验,推翻了燃素说之后依然故我。他将氧气叫做“脱燃素气”。他写到:我把老鼠放在‘脱燃素气’里,发现它们过得非常舒服后,我自己受了好奇心的驱使,又亲自加以实验,我想读者是不会觉得惊异的。我自己实验时,是用玻璃吸管从放满这种气体的大瓶里吸取的。当时我的肺部所得的感觉,和平时吸入普通空气一样;但自从吸过这种气体以后,经过好长时间,身心一直觉得十分轻快舒畅。有谁能说这种气体将来不会变成通用品呢?不过现在只有两只老鼠和我,才有享受呼吸这种气体的权利罢了。”普里斯特里一生的大部分时间是在英国的利兹作牧师,业余爱好化学。1773年他结识了著名的美国科学家兼政治家富兰克林,他们后来成了经常书信往来的好朋友。普里斯特里受到好朋友多方的启发和鼓励。他在化学、电学、自然哲学、神学四个方面都有很多著述。 1774年普里斯特里到欧洲大陆参观旅行。在巴黎,他与拉瓦锡交换了好多化学方面的看法。正直的普里斯特里同情法国大革命,曾在英国公开做了几次演讲。英国一批反对法国大革命的人烧毁了他的住宅和实验室。普里斯特里于1794年他六十一岁的时候不得已移居美国,在宾夕法尼亚大学任化学教授。美国化学会认为他是美国最早研究化学的学者之一。他住过的房子现在已建成纪念馆,以他的名字命名的普里斯特里奖章已成为美国化学界的最高荣誉。 拉瓦锡和他的天平: 燃素说的推翻者,法国化学家拉瓦锡原来是学法律的。1763年,他20岁的时候就取得了法律学士学位,并且获得律师开业证书。他的父亲是一位律师,家里很富有。所以拉瓦锡不急于当律师,而是对植物学发生了兴趣。经常上山采集标本使他对气象学也产生了兴趣。后来,拉瓦锡在他的老师,地质学家葛太德的建议下,师从巴黎有名的鲁伊勒教授学习化学。拉瓦锡的第一篇化学论文是关于石膏成分的研究。他用硫酸和石灰合成了石膏。当他加热石膏时放出了水蒸气。拉瓦锡用天平仔细测定了不同温度下石膏失去水蒸气的质量。从此,他的老师鲁伊勒就开始使用“结晶水”这个名词了。这次成功使拉瓦锡开始经常使用天平,并总结出了质量守恒定律。质量守恒定律成为他的信念,成为他进行定量实验、思维和计算的基础。例如他曾经应用这一思想,把糖转变为酒精的发酵过程表示为下面的等式: 葡萄糖 == 碳酸(CO2)+ 酒精 这正是现代化学方程式的雏形。用等号而不用箭头表示变化过程,表明了他守恒的思想。拉瓦锡为了进一步阐明这种表达方式的深刻含义,又具体地写到:“我可以设想,把参加发酵的物质和发酵后的生成物列成一个代数式。再逐个假定方程式中的某一项是未知数,然后分别通过实验,逐个算出它们的值。这样以来,就可以用计算来检验我们的实验,再用实验来验证我们的计算。我经常卓有成效地用这种方法修正实验的初步结果,使我能通过正确的途径重新进行实验,直到获得成功。”早在拉瓦锡出生之时,多才多艺的俄罗斯科学家罗蒙诺索夫就提出了质量守恒定律,他当时称之为“物质不灭定律”,其中含有更多的哲学意蕴。但由于“物质不灭定律”缺乏丰富的实验根据,特别是当时俄罗斯的科学还很落后,西欧对沙俄的科学成果不重视,“物质不灭定律”没有得到广泛的传播。 1772年秋天,拉瓦锡照习惯称量了一定质量的白磷使之燃烧,冷却后又称量了燃烧产物P2O5的质量,发现质量增加了!他又燃烧硫磺,同样发现燃烧产物的质量大于硫磺的质量。他想这一定是什么气体被白磷和硫磺吸收了。他于是又做了更细致的实验:将白磷放在水银面上,扣上一个钟罩,钟罩里留有一部分空气。加热水银到40℃时白磷就迅速燃烧,之后水银面上升。拉瓦锡描述道:“这表明部分空气被消耗,剩下的空气不能使白磷燃烧,并可使燃烧着的蜡烛熄灭;1盎司的白磷大约可得到2.7盎司的白色粉末(P2O5,应该是2.3盎司)。增加的重量和所消耗的1/5容积的空气重量接近相同。”燃素说认为燃烧是分解过程,燃烧产物应该比可燃物质量轻。而拉瓦锡实验的结果却是截然相反。他把实验结果写成论文交给法国科学院。从此他做了很多实验来证明燃素说的错误。在1773年2月,他在实验记录本上写到:“我所做的实验使物理和化学发生了根本的变化。”他将“新化学”命名为“反燃素化学”。 1774年,拉瓦锡做了焙烧锡和铅的实验。他将称量后的金属分别放入大小不等的曲颈瓶中,密封后再称量金属和瓶的质量,然后充分加热。冷却后再次称量金属和瓶的质量,发现没有变化。打开瓶口,有空气进入,这一次质量增加了,显然增加量是进入的空气的质量(设为A)。他再次打开瓶口取出金属锻灰(在容积小的瓶中还有剩余的金属)称量,发现增加的质量正和进入瓶中的空气的质量相同(即也为A)。这表明锻灰是金属与空气的化合物。 拉瓦锡进一步想,如果设法从金属锻灰中直接分离出空气来,就更能说明问题。他曾经试图分解铁锻灰(即铁锈),但实验没有成功。 拉瓦锡制得氧气之后: 到了这年的10月,普里斯特里访问巴黎。在欢迎宴会上他谈到“从红色沉淀(HgO)和铅丹(Pb3O4)可得到‘脱燃素气’”。对于正在无奈中的拉瓦锡来说,这条信息是很直接的启发。11月,拉瓦锡加热红色的汞灰制得了氧气。在舍勒的启发下,拉瓦锡甚至制造了火车头大小的加热装置,其中心是聚光镜。平台下面是六个大轮子,以便跟着太阳随时转动。1775年,拉瓦锡的实验中心已从分解金属锻灰转移到了对氧气的研究。他发现燃烧时增加的质量恰好是氧气减少的质量。以前认为可燃物燃烧时吸收了一部分空气,其实是吸收了氧气,与氧气化合,即氧化。这就是推翻了燃素说的燃烧的氧化理论。与此同时,拉瓦锡还用动物实验,研究了呼吸作用,认为“是氧气在动物体内与碳化合,生成二氧化碳的同时放出热来。这和在实验室中燃烧有机物的情况完全一样。”这就解答了体温的来源问题。空气中既然含有1/4的氧气(数据来自原文),就应该含有其余的气体,拉瓦锡将它称为“碳气”。研究了空气的组成后,拉瓦锡总结道:“大气中不是全部空气都是可以呼吸的;金属焙烧时,与金属化合的那部分空气是合乎卫生的,最适宜呼吸的;剩下的部分是一种‘碳气’,不能维持动物的呼吸,也不能助燃。”他把燃烧与呼吸统一了起来,也结束了空气是一种纯净物质的错误见解。1777年,拉瓦锡明确地讥讽和批判了燃素说:“化学家从燃素说只能得出模糊的要素,它十分不确定,因此可以用来任意地解释各种事物。有时这一要素是有重量的,有时又没有重量;有时它是自由之火,有时又说它与土素相化合成火;有时说它能通过容器壁的微孔,有时又说它不能透过;它能同时用来解释碱性和非碱性、透明性和非透明性、有颜色和无色。它真是只变色虫,每时每刻都在改变它的面貌。” 这年的9月5日,拉瓦锡向法国科学院提交了划时代的《燃烧概论》,系统地阐述了燃烧的氧化学说,将燃素说倒立的化学正立过来。这本书后来被翻译成多国语言,逐渐扫清了燃素说的影响。化学自此切断了与古代炼丹术的联系,揭掉了神秘和臆测的面纱,代之以科学的实验和定量的研究。化学进入了定量化学(即近代化学)时期。所以我们说拉瓦锡是近代化学的奠基者。舍勒和普里斯特里先于拉瓦锡发现氧气,但由于他们思维不够广阔,更多地只是关心具体物质的性质,没有能冲破燃素说的束缚。与真理擦肩而过是很遗憾的。 拉瓦锡对化学的另一大贡献是否定了古希腊哲学家的四元素说和三要素说,辨证地阐述了建立在科学实验基础上的化学元素的概念:“如果元素表示构成物质的最简单组分,那么目前我们可能难以判断什么是元素;如果相反,我们把元素与目前化学分析最后达到的极限概念联系起来,那么,我们现在用任何方法都不能再加以分解的一切物质,对我们来说,就算是元素了。”在1789年出版的历时四年写就的《化学概要》里,拉瓦锡列出了第一张元素一览表,元素被分为四大类: 简单物质,普遍存在于动物、植物、矿物界,可以看作是物质元素:光、热、氧、氮、氢。简单的非金属物质,其氧化物为酸:硫、磷、碳、盐酸素、氟酸素、硼酸素。简单的金属物质,被氧化后生成可以中和酸的盐基:锑、银、铋、钴、铜、锡、铁、锰、汞、钼、镍、金、铂、铅、钨、锌。简单物质,能成盐的土质:石灰、镁土、钡土、铝土、硅土。拉瓦锡对燃素说和其它陈腐观点的讥讽和批判是无情和激烈的。这使他在创建科学勋绩的同时得罪了一大批同时代和老一辈的科学家。在《影响世界历史的一百位人物》中,在许多有关历史、科学史、化学史的书籍中,作者都对拉瓦锡总是突出自己的人格特点进行低调的描述和评价,指责他在《化学概要》里没有提起舍勒和普里斯特里对他的启示和帮助。但我们得看到,拉瓦锡确实具有非凡的科学洞察力和勇往直前的无畏精神。虽然不是他最先发现氧气的制法,但他通过制取氧气分析了空气的组成,建立了燃烧的氧化学说。氧气因此不同于其它气体,被赋予非凡的科学意义。拉瓦锡十分勤奋,每天六点起床,从六点到八点进行实验研究,八点到下午七点从事火药局长或法国科学院院士的工作,七点到晚上十点,又专心从事他的科学研究。星期天不休息,专门进行一整天的实验工作。拉瓦锡28岁结婚时,他的妻子只有14岁。他们一生没有孩子,但生活非常愉快。她帮助拉瓦锡实验,经常陪伴在他身边。在拉瓦锡的著作里,有很多插图都是他的妻子画的。1789年法国大革命爆发,三年后拉瓦锡被解除了火药局长的职务。1793年11月,国民议会下令逮捕旧王朝的包税官。拉瓦锡由于曾经担任过包税官而自首入狱。极左派马拉曾与拉瓦锡有过激烈的科学争论,心存嫉恨,便诬陷拉瓦锡与法国的敌人有来往,犯有叛国罪,于1794年5月8日把他送上了断头台。对此,当时科学界的很多人感到非常惋惜。著名的法籍意大利数学家拉格朗日痛心地说:“他们可以一瞬间把他的头割下,而他那样的头脑一百年也许长不出一个来。”这时,拉瓦锡正当壮年,是51岁。 四、化学学科的发展前沿 中国运动医学杂志000124 基因工程也叫遗传工程(Genetic Engineering),是20世纪70年代在分子生物学发展的基础上形成的新学科。基因工程就是在分子水平上,用人工方法提取(或合成)不同生物的遗传物质,在体外切割、拼接和重新组成,然后通过载体把重组的DNA分子引入受体细胞,使外源DNA在受体细胞中进行复制与表达。按人们的需要产生不同的产物或定向地创造生物的新性状,并使之稳定地遗传给下代[1]。基因工程技术主要包括分离基因、纯化基因和扩增基因的技术,其核心是分子克隆技术。它能帮助人们从各种复杂的生物体中分离出单一的基因,并把它纯化,再把它大量扩增,用于研究。 20多年来,基因工程技术得到了迅速地发展,特别是限制性内切酶、DNA序列分析及DNA重组技术等三大技术的发现和应用,不仅把分子生物学提高到了基因水平,而且也把生物学与医学中的其他学科引上基因研究的道路,并取得了许多揭示生命秘密和生命过程的重大成就 ......

李晓西,现为中国社会科学院研究员、博士生导师;任北京师范大学学术委员会副主任、经济与资源管理研究所所长,经济学教授和博士生导师,享受国务院特殊津贴。曾任国务院研究室宏观经济研究司司长。兼任中国经济改革研究基金会第二届学术委员会主任,国务院关税税则委员会专家咨询委员会委员,国家社会科学基金项目学科评审组专家,教育部社会科学委员会委员,中国市场学会常务理事,中国金融学会常务理事,中国区域科学协会常务理事,国家信息中心中国经济信息网高级经济顾问,并兼北京大学、中国人民大学、中国科学院研究生院等多所高校(研究单位)兼职教授。被国家多个部委和若干省市聘为顾问。曾作为高级访问学者在英国伦敦经济学院工作一年。从事研究的主要领域为宏观经济、区域经济、资源经济。20多年来,先后撰写了《宏观经济学:转轨的中国经济》、《现代通货膨胀理论比较研究》、《对经济改革的哲学分析》等十余部著作。郑贵斌,1954年生于山东淄博。工商管理专业博士,研究员。山东省社会科学院副院长,山东省发展研究中心主任,山东省有突出贡献中青年专家,享受国务院颁发的政府特殊津贴。曾任山东省海洋经济研究中心主任,山东省海洋经济研究基地首席专家,中国海洋经济学会副会长。主要兼职:中国社会科学院上市公司研究中心副主任,中国社会科学院研究生院、山东人学与中国海洋大学等院校的兼职教授,山东经济学院特聘教授,山东省宏观经济学会副会长,山东省对外经济学会名誉会长,济南市规划专家组成员,青岛市政府经济顾问。?主要研究方向为区域经济、海洋经济。主持国家和省级重大谍题20多项。1981年以来在《经济研究》等报刊发表论文400多篇,出版专著12部,合著10部,主编(合编)著作60多部。两次获山东省社会科学优秀成果一等奖,曾获华东地区优秀图书一等奖、北方十五省市优秀图书奖、山东省优秀图书奖与精品上程奖等多项奖励。论著和观点被《新华文摘》等报刊转载和多种媒体报道。?代表作主要有:《比较利益与协调发展研究》、《乡镇企业经济学》、《“海上山东”建设概论》、《蓝色战略》、《海洋经济前沿丛书》、《关于经济学学科体系分类的研究》、《现代经济学学科的演变与发展》、《海洋经济集成创新初探》、《海洋资源开发战略位理论与开发战略整合》等。

张文宏教授发表的论文

他致力于传染病的临床实验与研究。在我国疫情严重的时候以其丰富的经验,临危不惧,提出了很多可行的方案,为控制疫情做了很大的贡献。

8月19日,第十二届中国医师奖名单公布,复旦大学附属华山医院感染科主任张文宏也在其中,尤其是在今年抗击新冠肺炎过程中,张文宏主任更是逐渐被人们熟知,被人们亲切地称之为“硬核男神”。这位“硬核男神”长期从事感染病相关的临床研究,并在今年2月,入选国家健康科普专家库。除此之外,张文宏还发表论文多达150篇,在疑难感染性疾病方面都有研究。

之所以称张文宏为“硬核男神”,是因为在疫情发布会上,张文宏的言辞犀利,一语中的讲到了老百姓的心坎里,比如他曾说过“一线岗位全部换上党员”“我也上”等一些激励人心的话语,让人们看到一位中国共产党员的决心和勇气,所以“硬核男神”的称号也被流传下来。张文宏在面对严峻疫情时,展现出了应有的自信和冷静头脑,他用简单易懂的语言,来帮助人们更好防范于未然。

同时,在众多采访中也不难发现,张文宏作为一名医生的专业素养和政治视野,他通过自己擅长的专业知识,给出重要意见和建议,让人们从新冠肺炎疫情的恐慌中逃离出来,有逻辑有根据,体现了专业医生的魄力与专业。而且相比于一问三不知的人,张文宏能很好地因地施策,因地防控,具体问题具体分析,也展现了自身的政治视野。

在这次疫情期间,涌现出了很多优秀的医生和护士,也正是因为他们的无私奉献,才得以让病毒离我们远去,安心生活和工作,讲真他们真的是让人敬佩的一群人。当然,社会中还有很多“医闹”现象,希望这种情况越来越少,也希望医生行业得到更多人的尊重和信任。

很有可能会的,因为论文抄袭是一件非常严重的事情,如果这件事情实锤了的话,那么就会成为下一个翟天临。

应该是个很不错的人

张怀春教授发表的论文

1、徐定华,浙江理工大学数学科学系教授,博士生导师,全国优秀教师、省教学名师。任教育部高校数学类专业教学指导委员会委员,曾任高校教务处长、研究生部主任、学院院长。

开展应用与计算数学研究,聚焦数据建模与统计计算、可计算建模与反问题计算,2001年起指导研究生。主持国家自然科学基金面上项目4项、重大研究计划培育项目1项;出版专著、译著、教材4部,在重要数学期刊上发表系列论文。

主讲本科生课程和研究生课程20余门,关爱学生成长成才,传授真知、教人求真、学做真人;坚持数学课程BIMM教学、算法课程iCar教学和数学课程思政,开展研究性教学受欢迎。

2、马满军,浙江理工大学三级教授,硕士生导师。浙江省女科技工作者协会理事,国际差分方程协会会员,美国Mathematical Reviews评论员。毕业于湖南大学获应用数学专业博士学位,美国圣地亚哥州立大学访问学者。

2007年入选湖南省普通高等学校青年骨干教师培养对象、新世纪121人才工程第三层次。主要从事常微分方程与动力系统理论研究。主持研究国家自然科学基金面上项目3项。

作为主要成员参与科技部973科研项目(重大基础研究前期研究专项)1项。以第一作者或通讯作者发表学术论文70余篇,多篇论文发表在SIAM J. Math. Anal., J. Diff. Eqns, Phys. Rev. A, J. Dyn. Diff. Eqns等顶级学术期刊。

3、贺平安,浙江理工大学数学科学系教授,浙江省高校中青年学科带头人,浙江省数学会常务理事,浙江省高等学校大学数学课程教学指导委员会副主任委员,浙江省生物信息学学会副理事长、常务理事。

主要从事计算生物学、肿瘤生物信息学等领域的研究。研究内容主要集中在在蛋白质序列的数值刻画、生物分子进化、肿瘤的生物标志物识别等方面。主讲矩阵方法、线性代数、组合数学、图论等课程。

主持国家自然科学基金面上项目,省部级科研项目10多项,发表学术论文60余篇,出版教材2部,主持的课题获浙江省自然科学奖等。

三篇一作Jssc是非常高的水平在JSSC上发表论文的情况是学术水平的直接度量,也侧面反映了设计行业的整体发展水平。 我国大陆地区在2000年以前极少发表JSSC。第一篇应该是2005年IDT新涛公司常仲元博士等发表的PLL,第二年半导体所吴南健教授团队发表了大陆学术界的第一篇ISSCC,题目是PLL频综。2007年鼎芯的李振彪博士等发表第三篇ISSCC,题目是我国自主3G标准的TD-SCDMA收发机。后来清华大学李宇根教授和王志华教授团队的喻学艺博士等在2008和2009年连续发表了两篇ISSCC,复旦大学唐长文教授团队卢磊博士等2009年也发表了ISSCC,题目都是频综相关。此外,复旦大学洪志良教授团队在2011年和2014年发表了电源管理方面的ISSCC论文,中科院计算所龙芯团队在2011和2013年、复旦大学曾晓洋教授和虞志益教授团队在2012和2013年都连续发表了处理器方面的ISSCC论文。但直到2016年起,中国大陆地区才开始持续每年都有ISSCC论文发表。

相关百科
热门百科
首页
发表服务